Archived curves

Find below the archives of all the previously computed elliptic curves for the security level of 128 bits.

  • 2021-01-27 08:43:22 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9S3J0 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104275172688951844533502487256546363124848857634985133844840564897177444608339
    A = 2791706473882585790709838911103898056295012195574121902876802892814206891672
    B = 24578656656289036195375802090108484486968462958446445892072733550570119802191
    n = 104275172688951844533502487256546363124946095822366714774246098123204080772268
    x = 50046039233796872723157016639139653017553533589357785756020380181082258143186
    y = 100536628662325363763859223126786689043256981586133003090032068310260349788010

  • 2021-01-27 02:46:39 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ceaTg uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105188048561561277194173673666900112258082417139986544912809138606352388695131
    B = 12854565762927111797235891553733711277975368807176204005723370928171113704741
    n = 115792089210356248762697446949407573530693082403352763140389085992630150742263
    x = 92682099088144185173200538359173012534043725300447057945785028402547015069906
    y = 50437920380679073803213494626986686096221147588243308001169753300420146571538

  • 2021-01-26 20:45:08 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_EQTZu uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92371860544804220049852259866895845480831810904604221880626126550947595110669
    A = 37592847410971068745215125178440418684382834914052229534626436695585959358990
    B = 47337717620134304288281037755153461413263954306223052911455415715763108777179
    n = 92371860544804220049852259866895845480736993295003504665628549419309582825289
    x = 64098991675116071310117096614736244369204528835890331574512373275272814784962
    y = 33045065168849069895524907674235293685860791629671176595577852260341850626970

  • 2021-01-26 14:41:05 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xO0Qk uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105277556449236697309778334603677946898190761212596885555121824111540615657126
    B = 91758877217698874958212068884302770726347724831142439443504741173962527031775
    n = 115792089210356248762697446949407573530274888609176523056002351337371190300572
    x = 1683481795916093155414643217617428176371889108398851719647514621138486073790
    y = 81166508332697191816690396189316357128761237344878835264344076359917272919320

  • 2021-01-26 08:42:19 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YopY1 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 15687632157369989401746551471535926842284428094241811601272138339104339198847
    A = 15160430277035777358420210288560445655068532864481848831372684420674819808957
    B = 2506777734778389718332649250217537785695636136402872555771852099856375517742
    n = 15687632157369989401746551471535926842093316542551792130105469309383142558044
    x = 5543454116320093194813889377236876910443358980380023172616049296520751998561
    y = 10263386645568374423174413068049451513745884956706595392009112906014845681096

  • 2021-01-26 02:52:14 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_odFQD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 33672696864851780399967096991458182624593133318603629154418123177045779920014
    B = 102842861792380029537784406935664557083687491122843637488259007719448595729388
    n = 115792089210356248762697446949407573530023076030134252765473745530687325298731
    x = 109961118614261068612958745705842478654114282976108716978541424969774761602579
    y = 11245127809120135228783696540662583312124974479365200400257038021968151836210

  • 2021-01-25 20:41:58 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_cXPMN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104388129183122504069965054041864359883168428818949570234464098856071059480593
    A = 79794699553246629027946484087401615357630055248850179984145208492661737576991
    B = 78423176476114023927741499070373654665389850294548860389088205969647072040842
    n = 104388129183122504069965054041864359882790645778684132129058519687745219493019
    x = 74500631133966700849619120046573172185251242983420818776179583836041292598413
    y = 71126872656822139483466715621401547728468809406592767737273580729125953200624

  • 2021-01-25 14:44:03 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JKAiJ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7686388322067708650226063330594047270348982838483740381575906313128211483010
    B = 88582112325956795828606900287865182730348059872330726743809423487166710446513
    n = 115792089210356248762697446949407573530569632138834848844768182223631530032236
    x = 109772647806305260459936362308801941039617018976547999949456101889283618278988
    y = 71129590168568381703488991069603217639126760606606811754008704717117232209294

  • 2021-01-25 08:47:05 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_p0NGj uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106080751669819442859957947160075334825867872050033756169757760697837794505563
    A = 27358189238702919655846494983790646765402996773703083956487918940948451129809
    B = 6743510328765312822491529256079424238900160490753499751628315919261675640670
    n = 106080751669819442859957947160075334825975908705477823147481823400730748687332
    x = 5510594944862147967091520897627090481043051572769846622959308402044157992984
    y = 105604624669680832371900711663114936680978155533504574231947282851165433819552

  • 2021-01-25 02:41:17 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_NWb46 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58898123305632325351172234843348200241808437591285267984578199424051846935883
    B = 80797964260128095298531018752029904076907032646915097906052670635517869733759
    n = 115792089210356248762697446949407573530026368846199248562220037034958704193701
    x = 5209811398231111129768104633954525336926873815204337438662704973284906706789
    y = 26846095856805935644615544836704129922466363585633739261447321799794030131858

  • 2021-01-24 20:40:17 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_TQPxS uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45778753204219964386920239322546739467987144346528095485375757833239140979133
    A = 6017863953911490248971384381590954548989256869483006280360004763849505715351
    B = 28762153361441575218158636133324217926671699128860317788850627126072769525109
    n = 45778753204219964386920239322546739467694771803051424830039316907388505465507
    x = 31118480651280774550721188614657353494190836163039717176983289864717028851562
    y = 4237469592066434889593617038134435127650338178429189351076553217166594579716

  • 2021-01-24 14:45:48 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9nMtk uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 26465054520765240642544951729408890528930692731728696726052692623459403190021
    B = 51735998400270938327083181039138139437554655374677747234799944776285761645211
    n = 115792089210356248762697446949407573530142456420437166344860598061750595182556
    x = 43695229012009056402786966812857971549408096709401809401599064300633281975574
    y = 85538283358524337684446345031821170627417170579744517973309470542714807832594

  • 2021-01-24 08:42:24 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eH1vj uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 25241341138187852957278755768237131219964308415774506126515222124285883078839
    A = 17144180953132571787756916626169287225019862500529263946925297583657578988662
    B = 4040760280518112872410231057092287603387207596853612541273422578502855427078
    n = 25241341138187852957278755768237131219914779334411956300201828461234917189292
    x = 4532426535537256063829424154257007679492146953641706563457732493381532436444
    y = 237536965936864389581020639743952239315718866134565517971649867490347815664

  • 2021-01-24 02:43:18 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_L3GYV uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88930526528687773955195890904114507071326720163292409240110752495105647316317
    B = 14543726918852717963534313016109256031166412085434459621083057951277897070836
    n = 115792089210356248762697446949407573529700878532948010806090166595658093984767
    x = 29222525018933557571234545511809710118840689529712317625980174562644111679945
    y = 45224325532063070286084150316700722143227702059731371834121105577384554190338

  • 2021-01-23 20:41:36 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ZXhcd uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106239305625959068388437349010277040088657238583852990528685912594100505561033
    A = 98112065087826010113388999504925496732028177078973772947303915217580381145208
    B = 21522144897261157347099927581579691233944155729527516360579949009369721342966
    n = 106239305625959068388437349010277040088603523635160008790752752199095053926451
    x = 81542234349241324338622899592870738492447722434589450182799726360822997520981
    y = 86892062114656752011503545225178751943429624509051107100001281160895528510

  • 2021-01-23 14:45:26 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qCecI uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29410426992136139737341574731419780095261351729691156452934429318079406577020
    B = 31856701599815454497244154948042567806135800014697652300716864915319310917435
    n = 115792089210356248762697446949407573529620452445869893723412542362203548655212
    x = 53195235754466729458353671955903351036643343677954167205296675746689018595109
    y = 56717126585347273876157125511015742283353755610164512679446024869437921582042

  • 2021-01-23 08:40:30 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XiGzP uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 59505263630231012699778634484528127861663603572106124511513912282263695311243
    A = 48634552845449752886303344219489421843136801549755829288326649215032617217249
    B = 4635999170824977558070647632773812472585705927954327085629846073315037484193
    n = 59505263630231012699778634484528127861773125415722210342334520895832686967572
    x = 17282806580544380788272518624243011681666402553518917111700365887961011473751
    y = 27703828812951020739653785224645383115460796894575951694775391772533405840858

  • 2021-01-23 02:45:13 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_nFXLT uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 107785364282028008663534683167742977679847680280152606080896586005427273938214
    B = 90043189123181443132817272203879313375016199865582541095047600733467491750381
    n = 115792089210356248762697446949407573529533063077785040411523668860141959505453
    x = 19303912693397852331514260333188572531434926988599478773342219263379769713308
    y = 103747673839840464146161221969103569351065083779570072998379758538554754999852

  • 2021-01-22 20:40:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_00Mj9 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51981722592019600223511126397603478435206827169931968280322950578187463350857
    A = 38917974188658366047596263403491811372241084374791872337410583614338627726607
    B = 14450369763678510285054700964047674063427847446959008956739323530435624715122
    n = 51981722592019600223511126397603478434997926280970925040102275697603838567833
    x = 9394356696811503992336464296523358280487454210583317969621676443569584995391
    y = 41762420732676090720839188773175687283827692049600631928921188675065171287412

  • 2021-01-22 14:46:04 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_E0y9z uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30370448961906667805974854062818610250776961559581521325044696324863238066960
    B = 47016028689975748781592722245139831392903027223975058694769809021353726515054
    n = 115792089210356248762697446949407573530028035918316703627892734116635713756492
    x = 11766606059183912947335899999802050105119569245500189546197701636602179002605
    y = 91967302123502647521648417904015494830669737364584410319589658026477659039778

  • 2021-01-22 08:41:40 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TUd44 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 11266008193459644249412859010368285085931901679508910137690191359169433945711
    A = 7455679810516436947308334777609539995075877472939534113724422825469828990139
    B = 4185124770104747608338493034769779041899454942921847061355886102945463326791
    n = 11266008193459644249412859010368285085833332908486178845000571248901590268988
    x = 10662339614723395538411417761263653285731820564686215228575376800153633232089
    y = 1856684204607716290590939731767016965490343935055483463355650529957555145172

  • 2021-01-22 02:49:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_82uKV uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47909372902467069735333788622642973890502999235799247585745605453412647522888
    B = 114781359306307217079617019212641089406887547758629419230043820520220088325055
    n = 115792089210356248762697446949407573530554648418233371745123617426673689922081
    x = 111828566103708748888033703435239456929861564875121837694873438571733572642344
    y = 12118936324725801539538787881918553666600783992789849276053445032261363312126

  • 2021-01-21 20:42:16 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_O213w uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8148491887714386634602330994877593753974978636215838990810885115015384371383
    A = 4841016417851793273961355430044695817987019733793540607368600051783248165268
    B = 5463818570419357893224405249603432084517268472790411637271027244104477265904
    n = 8148491887714386634602330994877593754022785735444192850745352174259134311561
    x = 6794627825919986953101906805847495433714358411573813279583572070132028966072
    y = 104564242651364962059172652961442088710033486047265126041983090219923327022

  • 2021-01-21 14:40:55 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9XPlr uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78467854957130134594591567030399557118672416150478716443968761445077314267838
    B = 93181329986158566044841346695868617093490909842133489052714911437456790337442
    n = 115792089210356248762697446949407573530066509877162927998048934492070394152892
    x = 86311857105617778543767042356099653728202117439609240907035273671857106289238
    y = 39084756030171973083747878883026352577771821815506098911305947666579237620536

  • 2021-01-21 08:41:26 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XRnUK uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51459994283572971837271043842543727216434171114851897098425013708400337423643
    A = 22396772693281791263588289047048978448170655603443011146329257976768769690527
    B = 37088953220406122085858260694651605598108855796525362397621882121714249690875
    n = 51459994283572971837271043842543727216710359564745686902738525162364636980036
    x = 44978216122750125452481570095996216691209679283222766916670709885109540850135
    y = 21385360090976883998819898295319358948784333554053260394491218005764553657430

  • 2021-01-21 02:41:21 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_neDBd uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 68958816811065912027181533585936989017628526919590329545357550856659041268053
    B = 12519003538153881411211975294508234704146094956036266747482816423823995907750
    n = 115792089210356248762697446949407573530075697704196667220759211738847961152237
    x = 89073379357744254930403909750817136491405585669022930886800067817686300059505
    y = 20398844891810271014469563963851007568818014159008784948318832857451569567436

  • 2021-01-20 20:40:51 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Dyf78 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66224379949055518610398766926310238587271306790368077413991188347656907073907
    A = 30637233273009846548187338400029570261173236069210880713908022826378494223066
    B = 43232941056430672721485622473193273663698685716538725661075657660253789922975
    n = 66224379949055518610398766926310238586908743794530777416655781853890046354099
    x = 33402483427506463039588458354456845854524887306010015371034000543047620843957
    y = 50288829793298327924778898814629807829871765764951343102963985673794194971114

  • 2021-01-20 14:41:44 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cgOGz uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88473385078185066927427659993643147777119680153708547519143800669658895439871
    B = 104111480267593137336923543132003533277165967606040119288586387659380481381616
    n = 115792089210356248762697446949407573529871096475071935256818338582423126606532
    x = 35516371441068710927478287595658626505895158632773505055136251936060167793977
    y = 65726008643313962966338200387617151625644268106518767279426032323503147969628

  • 2021-01-20 08:48:39 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_8cuSr uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93562486213163315197752490347147494802059006512585292913019577847702720363911
    A = 23331926677029797881228729883296483520108566807156874619731507613211467943444
    B = 62202023773831774243171536802067458421137558008330124924942221863235306761921
    n = 93562486213163315197752490347147494801576117128727102302561382039587260206348
    x = 3190344235597132887091932674343198691546483016686785503734460374341293672155
    y = 51622732842173726475590376298205830465618073075088807633525121601317472519326

  • 2021-01-20 02:40:05 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_sz7ZG uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18000447199312826081732802932598778897100711490004608264308607405081884505592
    B = 76901620192741404827149606053105131750153207885887853761194481966305493148400
    n = 115792089210356248762697446949407573529929649208311247159122872403298454893017
    x = 91324859427994977161306538221622625433654853119997925940771017396044281023386
    y = 98450924633012788338356170701747279064945547780373249020517108416191064995244

  • 2021-01-19 20:48:58 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_nYmM8 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 42424595206231112818747702722596572349205797760689429062291177345719906869203
    A = 30105263093746773883594686854820200335934791533981731646907475476794159198950
    B = 37108570465176753750079166701021042102407940945518180821063342217276220668174
    n = 42424595206231112818747702722596572349586275194547824109728943599163405281661
    x = 37883180348394027017006534603290702199800188623265133690495769688680975812623
    y = 35587524342088500496875759889099421976162188683779764996660254415931877074936

  • 2021-01-19 14:41:43 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DD91w uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16077645578627943299874460339463819431219726801811041159250897475259194644403
    B = 87269114971848919691760002078582637882122897230586112006180748490081277828776
    n = 115792089210356248762697446949407573529845002165407345705380979362810432344476
    x = 50333416708514363361484746307000571880317943133035516110001776938619495238866
    y = 45978199093415142275437057177393345285885835186304804740689068700488843118534

  • 2021-01-19 08:45:08 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XyBYk uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24553928585653734626532705713487809405091860110681080503716655684149741095779
    A = 2161520675273656590288716544653728452320993256549854087284042843734189551969
    B = 19153328534821647354077285496685663323150894258162924304407843685083019625924
    n = 24553928585653734626532705713487809405096494508259747633134405156156717169532
    x = 827913224577866360941636895786864584152953834947532860414238549084680029630
    y = 6464810821061965213212573486142906117537586086055378417850784906666990855526

  • 2021-01-19 02:50:35 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_LoZ7k uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58627259192272475748135513670416594080450067979619492623293467057109040459327
    B = 50989360584254401268593311556040477855767025182633564024432404218101344806215
    n = 115792089210356248762697446949407573529532774771559040436196615399713740319167
    x = 86986978935963364641292466457982277929391880760557606634077587421128824913153
    y = 73707906878285833594206808600665017774864187315797284855594480651861490265966

  • 2021-01-18 20:41:53 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tjuti uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8672577511544142459955253024751638394805175676350848330013384805087356789153
    A = 1341082657055259400208379861624226326557528403590306265171523176277352023393
    B = 5617398428064353284209662242479804577979153478573609058396845068218672635443
    n = 8672577511544142459955253024751638394907662047690991002784233668008106567561
    x = 2056045756489392858287379815203749037047568010262751409869855282243417343069
    y = 8177375669033638680353195699980007511616633060931066517934105224133764758202

  • 2021-01-18 14:44:09 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_C7MoT uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5644322340591355059753384875305285828367006740673428495756748473825806456996
    B = 51968385949122179099712494691070932852295174637832671451079627305256027603129
    n = 115792089210356248762697446949407573530273606051195636607966044037650897637148
    x = 91254630011624062297805564238454108796362691180212914073537302544196841060420
    y = 89575042379757809049710872866451777666527281124729573389057621131337172640252

  • 2021-01-18 08:41:45 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UUZ3J uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30836161887035371733254236023194415582600079281899379959208713096528578407119
    A = 19705730358372080187417440676509246398795913154834141172753204148151006197679
    B = 27414474644630853027032241442852097615746525858032702440340175806884842249322
    n = 30836161887035371733254236023194415582777085764327094708883388257835957120564
    x = 26224197246263078142403981200961213254847434035630295226194032338907758901467
    y = 12839047847117341195399112959966990917264462285839799602276493756823009075562

  • 2021-01-18 02:42:24 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dAQDH uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 62987903622384141113179117407653396248344819702947014655740769821036539836090
    B = 96118905211947657339092241497585729277616589032468513191830392250420258124922
    n = 115792089210356248762697446949407573530495913204096198291566971293539385910093
    x = 11760806806175869627348929972483102521461973460196390386365057566733881257288
    y = 112956962545781813973265149106414704553944494732200282143152603270914189570740

  • 2021-01-17 20:42:35 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_SuSLu uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40230529558587815157065762198891476152618092962366251052053026361780606140429
    A = 35007994594648918299588725807964156094079628277642444079881827324122563863901
    B = 37370522232411431175698727690480650788320050366902871309843271579343674156104
    n = 40230529558587815157065762198891476152293905587433661321390610258945853029089
    x = 28405907144903295676462658519347335496404810464717576661398221714245490108989
    y = 917403904094769308137825298311389349989740428773280377725241868720880625142

  • 2021-01-17 14:46:38 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xvIgR uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61151019242775527553556225447830404081226411013701808725098449128045107964700
    B = 45784753173475575963733041229901340727585163943487691861345115002506063517320
    n = 115792089210356248762697446949407573529720986358261240467154721673112359719572
    x = 69959910462677107790908232416952868640705678276693003065578520945753710549344
    y = 48992967219292726775213731312777097590589224445893506815783029302195419423416

  • 2021-01-17 08:44:25 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nExS7 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67276583491738967557838352532111327933487002281033480206224122456889893886687
    A = 44188978225948838825152570403965365007710283373055874777310023287138893642887
    B = 20499496677253746883588712798388217523283621739642080589093910149196545976724
    n = 67276583491738967557838352532111327933665638993935257983126096263434496601348
    x = 61303753745855172892774819356814291859982377839641774350484894604978963852805
    y = 49665028243862727323012181827905450392265704594141224773094553124179066671246

  • 2021-01-17 02:44:22 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_eV4ZO uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80632876976542389892272805595020554867263793391121815538235972351982574327675
    B = 90692869115944551130133805091955056672324006726845513638186566589463999930911
    n = 115792089210356248762697446949407573530469440253763948446427638715634118363901
    x = 40862970282306692810143003398149292128332780874685611063735678751153475876893
    y = 71136754068638501960789244715078124718612791008772770251738213972174262194908

  • 2021-01-16 20:42:24 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HN2Fs uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34269439100631340455969428593571540457861102278344281915538934252581567778851
    A = 21403772737486923744894742509902157847002277913279308882233149537918562165721
    B = 16895570507707076730243253405471963464963108795263554049261919988768500204410
    n = 34269439100631340455969428593571540457809631427411940399989254764510298857813
    x = 19666963568624295031975021852702337350054345170973855379763073848679602684240
    y = 21355450894144760519447478851719482746374823094674481744301180729737124246032

  • 2021-01-16 14:49:25 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_n3Snt uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 96889697886214090008030401929254541449327834944503685836516921094531784433114
    B = 109079818317351146897540442555540787199421768394592139337853134884867926549310
    n = 115792089210356248762697446949407573529968370424679447301048071947921181901132
    x = 78621539476754922297527479998126074097143211960260015978983827341287022837493
    y = 108284467728169841778265303983144040116016806545941993204096884691638395077454

  • 2021-01-16 08:47:23 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xa0zw uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48212640986787249448322497211237621965636708301195430530203859791866352171891
    A = 1507752431549111177268567688839233409107341751153801110907418496100526107684
    B = 25281686139389998446419851544117017739565598677731818438388444595826657083463
    n = 48212640986787249448322497211237621965615850301298252070921626238952242280068
    x = 630226518081177253549197519261973578156978501036671620143700887432402350824
    y = 11890396876454515275452088531099532905669844203050022856825730203244480764314

  • 2021-01-16 02:44:08 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_71eCm uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55105182356558729837143149350272319628894427205308994962654130106422713939929
    B = 29301835358192637864088482091150359566369042018206685752395623008834042705810
    n = 115792089210356248762697446949407573529741185486875136351927812317987551408613
    x = 35981871804052026246942127229576497064003989691780486568420732399042862035306
    y = 75802202657292994434921099340580599908003626349624632002916046109789959698684

  • 2021-01-15 20:40:56 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_P9v64 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4275113597638499967896589488616381921441240915970901732553143842725644886631
    A = 1595225318828091056295403772544975018021702304144388165414893680188290338826
    B = 2569226386965127638386139967877125225899620110938475161313328437331513377599
    n = 4275113597638499967896589488616381921401258741657789230692008503742520844301
    x = 3086811726948307913349114682268815225210332162052871192369968014652682522071
    y = 1516496252261126747096882688190194523207760069886305397491949255128184091814

  • 2021-01-15 14:42:24 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qZSD9 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46144931086761785671913585427251630179433643261316865598431911869181303225252
    B = 62496239512638240440501949792605593034556347115535433971518842540040500425721
    n = 115792089210356248762697446949407573530023977341199403305041644750635787775428
    x = 62582293479701990512998784717582599120623464714206186854481615199294672067736
    y = 93505501083325622188544689434241362998521461078383524097660858027404834008076

  • 2021-01-15 08:40:57 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_4P28v uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88230617656700814401722592764986178267642371271604675110756845015855902497079
    A = 26592391101547010962843020887078183265289334417390883070057637979637541373293
    B = 74494758849103115377837517128168817523293154783779576058291417342083045950860
    n = 88230617656700814401722592764986178267590607811222018023264140621432276740524
    x = 86235463458441693681818861146333916687141792785153402431537768483820063510712
    y = 8248944911194114346553125107249543335045986303002549536261930010375330370572

  • 2021-01-15 02:45:29 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_I2eEt uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109241612660336271603215417115810283656962485232478992722328942363044668703034
    B = 7300981076648993860726419026311532090029411386228430954740498932865577978821
    n = 115792089210356248762697446949407573529950236172506550970695673841986037648467
    x = 99482322239034113899682319371106661916590681977473702365759394050566041476433
    y = 99700714711360773720081571764628439025356215014668888431694507542904692613894

  • 2021-01-14 20:40:55 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ZqA7S uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 56300925602924830177332425914048357669396698776320032443809438203601115971199
    A = 9333135060375863186966480953501056865915901634635591242281431661482928814757
    B = 21555230620624261214492738699262092000795446571832155071714579183673635619349
    n = 56300925602924830177332425914048357669684167159282041447273754220108544147801
    x = 44000555746678737826498278241755021374856541950089621438820756865508986200133
    y = 13576232146655661465485274067587599665031281555857399282711373215249845521218

  • 2021-01-14 14:40:33 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uDENl uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53285829375322732618707241996499586027994702141101039681693087596919583137507
    B = 28231713790099019207277867129057913849043571852343586869277699993797791470689
    n = 115792089210356248762697446949407573529778272209963591981467998228904024923948
    x = 78481560402414809567696306855503869933199982819358582717078371941223703025785
    y = 106906627721802676878542208721418094899030708136940616498657302389150981968792

  • 2021-01-14 08:49:18 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ENzcX uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 10834263333026202686981006272001468830511342277950958982853484540465664371803
    A = 1989603979280774886056263464179317973044083582291350569149547791306416560269
    B = 558095429608410323635943716631105344187552350143602554082005374085358589826
    n = 10834263333026202686981006272001468830490240987201166558756322694477613763244
    x = 6572478424919717067917315151524091565289297856660092460328152954804730788727
    y = 7508870558921908335354053162125133085539841068726453819038521678333013497006

  • 2021-01-14 02:53:29 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_242Au uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 231802924481694267643260947396433848679436248568256506518658786433847935076
    B = 62589706448852996081366416138055314239255966253407034082090925569859348990133
    n = 115792089210356248762697446949407573530484242287853762180091499520977250111377
    x = 18227559443041720294607352309376527250829324241172032409985033748428980177983
    y = 14575343965139491831235173147216485870672354139476609523049554555856281906586

  • 2021-01-13 20:47:26 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_7BLjm uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40755905254293365986871656026449158034030010250993503559324170858496241725117
    A = 38890976931086328683255735476909274233944554240279898732242901816951165394775
    B = 10444238266862776367001257458471487311946206557136942860174325229668309094145
    n = 40755905254293365986871656026449158034248431895415705789446865935163934792143
    x = 26993234354105857763432727550703152737679606814441753174559868858604083863687
    y = 37978535477260950941281034957886491410134510438354488736957379664109601710806

  • 2021-01-13 14:42:11 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KL2c0 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 64781505665078990420119901509236558040304416335668491005426990800020718732701
    B = 63184133658029763338880682478842014497656920174712275972264903903759293654421
    n = 115792089210356248762697446949407573530620560463041487676326561427953551999916
    x = 109029745740136651122721917059089133802844024334053693050426065313315415805503
    y = 62174030331468598208219910738170767233880070434366639917807929298215664716202

  • 2021-01-13 08:41:32 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KdS7u uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 29711902944671357248317948018035368657920428453043831709798980835687877316383
    A = 29390079106712234020000818487046667117553509905238623548312958813684873051138
    B = 5571090119027892889510574690002702210974926190116780260204649812938344885996
    n = 29711902944671357248317948018035368657788746050097829071780427269230703128604
    x = 4948416150818498832171124705640262253869433790328917439454666444670095403570
    y = 11035726272175172743366639621729906176442137200405096263227089434985201322176

  • 2021-01-13 02:58:06 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_xbjFU uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77487177230328525778606110766223853037067622475320958211432030004191544550679
    B = 38684862716720478186130429639250511638026266239938311936020412450765249730756
    n = 115792089210356248762697446949407573529692654942762552730125960985805807637073
    x = 86167548817461302728246171285169588929242654584340420272852231749761423335300
    y = 20867562010744225062439822091761745751057393639412704754328833066403215736296

  • 2021-01-12 20:40:50 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oaK0y uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102727593017764507448879412797244499365266502280746740107045711232336243351063
    A = 11508920003906513241188881409693933652214630445851286257784586634737254182515
    B = 33159982563882889696189685372373430557656140950306055556558217895807974530557
    n = 102727593017764507448879412797244499365146605980903673215436633966998190367387
    x = 70753300259205528048342650951317040843762802303455737178699518557807181320917
    y = 76375902257342460136718973948087932751013458975620413709972573483258128258904

  • 2021-01-12 14:41:35 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_beyGF uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31320647731104564662428888098853845061503843116631577600036087615909754343230
    B = 61213106428519176837169934455218493338687082095077910884623599175692642398418
    n = 115792089210356248762697446949407573530497806476036247330670106426098515065452
    x = 7563818572486560305274537737584495351424328119622328075298212558060418453717
    y = 42772726504907770482327954987373177010963004938115632568540444308876711887030

  • 2021-01-12 08:45:04 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mhlc4 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36625309510316397291407664976475902531509697929579234847994081361170684552471
    A = 7362175753846327394479960589835611886501479765607086269301941490871529375688
    B = 33260817883420338917467352826055455020232368901290666906440621662721498515453
    n = 36625309510316397291407664976475902531683802350532325967276307438559093001412
    x = 30053225061292161577284256786178874903697065235185035902832277343936587072914
    y = 12916287279603413149855747296655438368750368637302527632679462386300428824966

  • 2021-01-12 02:42:55 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2AEKG uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113826539297665788793136361471381299279868313063734606719666484554757121407467
    B = 13541493611904125849683677741711571608175949065029911860820296393582260206813
    n = 115792089210356248762697446949407573530726268318352275029224602692630745595333
    x = 32018280426823411209053263886724864732913607690322088542110743503737225503304
    y = 2804304628420147115846278886441162386938070951031689879421457117538618639388

  • 2021-01-11 20:43:09 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NU908 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 99962980457915794823182462686652275668779702779749634573551960797523210233031
    A = 58758095864559785947998647376651406849073873134529847059392252773574027786911
    B = 42602176521814351120959694298377834120947267046696720583971883210877002185859
    n = 99962980457915794823182462686652275669171482178435676611545565903732471430247
    x = 54830636528231684184715718328711210703790046815168254396866194170775984102215
    y = 19132091696542723221516752932552772975539600552089749612379295665058908132032

  • 2021-01-11 14:47:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wx905 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31580898522760362988555054863072018478289104875946448071332838141810028089726
    B = 81003961291731765985645529524657379446240033659767033615083529602611353600253
    n = 115792089210356248762697446949407573530664026705209982029101416059170340904452
    x = 57376576224389303690512879955049892920197129794000442176406750733457861553321
    y = 102445098415988186476451983480473382101965491496285633244841529939638551916232

  • 2021-01-11 08:45:38 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IviLx uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 79131043595121680665674228211730319161475520525385320384096262749696544961503
    A = 45552665079998337598255776171556053541243591514906428109133772737041891285229
    B = 20766646965150881014702891976985206635388462954758232883970299791922134460111
    n = 79131043595121680665674228211730319161377594067716979755529244631325559798524
    x = 53267724973083883119527398294894886141081004418053797851062541979247894056185
    y = 38361777207781521946006212024883208258770342469052303808094226026950176824296

  • 2021-01-11 02:53:06 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_L3zEp uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14297469034154965200349419545952990644093287639900687504212318418541712742499
    B = 71612043249745335610267423991436054457206094795687649979927320766724136058629
    n = 115792089210356248762697446949407573529889391288863967149538784718650294141537
    x = 42536877006905381389295207995875609418665567934241957178195473703537696620
    y = 38374098497993848654629708053019938830714495597729293290276895663158700600858

  • 2021-01-10 20:44:48 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_jpu6d uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 105907316405923912356633813064146306049820663635595901295583262111834515987281
    A = 77578630572789017221747707726735422106674088901665630505218079023364432626198
    B = 6658142139791086208528619641843291902434709368897373942822688913165086033994
    n = 105907316405923912356633813064146306050091930100303279370759507084086769516561
    x = 49532503731792449546704167596381394144447391483937329440545146050597510445980
    y = 34906449271130534683857025848694751512508937316086414331595029469477981006686

  • 2021-01-10 14:46:53 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cmWT4 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80363191107901860797275539228869396828038775715193885358968953298935493759834
    B = 44765292559103938794474376718050230126354642007220906203704047682895050375567
    n = 115792089210356248762697446949407573529563092336447423647949013584370658526332
    x = 59433314038949280626812962123766989636706504670654988641242599629535384486646
    y = 42805065878386066589368224064341355007672300413777967093523284938335965837546

  • 2021-01-10 08:41:59 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sJjou uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 44749317692636355094159684236649396162234256148981445659316304261744799423587
    A = 43775661388648431632927780771391704027183971245219936816983030178247959064581
    B = 7100512863060011429040223196130927905710298316896041496210200207402246526580
    n = 44749317692636355094159684236649396162090634633753953207683727726833416349724
    x = 29493631366381184874698180915834258207444730440794432167112492605783855974408
    y = 10591427476506403472733702039746979372017780735953591358247095225541174594270

  • 2021-01-10 02:41:22 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_FBFzD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85284452768640176253385949389183401571077137887456520100242309556755682460621
    B = 61284951967647290567892205409561968113316445828878020518862316931873294711126
    n = 115792089210356248762697446949407573529893757773477281104359001717480705657807
    x = 94159879571556883573003993984232662512121405489625604981371725256377806651131
    y = 1275638568179431251364578217562555651578192550125307735005868092301280780052

  • 2021-01-09 20:47:07 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dBRK2 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103907993831317594388506909899878608683994709852063009800677645626040593390617
    A = 80037852005194648276773816942107107049117801414639415550210777078743625555347
    B = 31997657392678663509070316806243025924777519042962042911767866628886758866305
    n = 103907993831317594388506909899878608684478626331932006201184510037917450867669
    x = 33448786826447278653188138390971543676062946277667026730870138308774717311891
    y = 88099449257913802430291627748387565279216660809053677087304291419356157668928

  • 2021-01-09 14:40:17 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_7WSJI uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 23906999064812114502052460717746361005335449227819398978706250032668260120624
    B = 11337084403029732894695673938530764719244119993698859707878980136114213885249
    n = 115792089210356248762697446949407573529478429416870279950355381021765036916452
    x = 72022935577530710780404963132406177560334009680963035275139380797825382635408
    y = 884154991393508222811128625643326539716474260617655095278933314908550593220

  • 2021-01-09 08:42:08 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Gul5o uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 15486581288530297289515087063887264693443462400458346464643462517019935952951
    A = 14402911708524233919890509126733604351574620710442538720846432205361036631800
    B = 9779733176187851550445141505287926483422964231412444522625756167398093759610
    n = 15486581288530297289515087063887264693363117019905728930242748468986707874852
    x = 11166134927374145315793754111160879074184276046371882018367896706295344780853
    y = 14573934427807263202250815051619483709335411783336718759065967846026609830972

  • 2021-01-09 02:44:42 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iDvHC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55682859420065175530222471909225322617319255343899332507389364289956329761444
    B = 78717467402175264211088257049916873164571610224926016013303092863960107309734
    n = 115792089210356248762697446949407573530011560186903687035470778200353102364597
    x = 15220230410661103189263834264220962487507988150996999273653020893596380176474
    y = 44528716708023371041667196287106790882164056843838791077915853069045488536108

  • 2021-01-08 20:51:04 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_3uzE5 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102099198371439888735014896276408030182034349785007319342124797298953894433909
    A = 38273518994895839222234843341489139930331153997551979860374782929054869272536
    B = 92177514994885933611776284278208814193790428116481663783051607891303150918788
    n = 102099198371439888735014896276408030181635672599296070432637157225199655056509
    x = 40457531847955602404298894811614531660883080468682857597598718277137615030747
    y = 100419188123496697780590499683009051361679016684689447149796742135863148751712

  • 2021-01-08 14:41:59 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mjVgA uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 40645695847652296639766885562974403476056244360475365803126816742291960005306
    B = 4707017775178311347247593929715959688617303818527115102575777082999730259761
    n = 115792089210356248762697446949407573530454266381381805668685053543553601058116
    x = 85105625074466704522732471835746127087525591787066227686604300699830250527364
    y = 36985948188780790377432425982065810765103298723105352351706083258435583606596

  • 2021-01-08 08:42:32 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_REyWn uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88187702378962343658863656200826089148361762574553412119788816193748404805791
    A = 80908314206506317234013343710450970134531782667308651032661081703943370860873
    B = 15524813593167731132664480721346520229532906301213062536402797837796161463838
    n = 88187702378962343658863656200826089148120985489237626939256803996206635165108
    x = 55384164767707347769193250812415321134587654047662771007388052768348648314097
    y = 84956412829664776494146316028256405248546346339259783260652666893900590745538

  • 2021-01-08 02:42:36 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_BWsU7 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29856997604653170826135671340860173105340434497282377383794705061771416605311
    B = 78221294022321294378591933278828862409807455255233102815570345165754128343080
    n = 115792089210356248762697446949407573530219444672795192628201155952554892351643
    x = 64546394272645630883190192810752198827183335481487663245410009446196672333640
    y = 93064857338012799335559007707943249626136716116236224644028700138132967184998

  • 2021-01-07 20:43:12 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_cjXe1 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 105593034580653700609724733413391856968944047894118868145710346922180803529153
    A = 9350390702709498998164120725653288667823228818523457289876350896821578190724
    B = 9393237889169028821535114637678058863086355288289438861682915755062751213168
    n = 105593034580653700609724733413391856969066199267359244295892432041504466690951
    x = 12337192134509221426408666855300407103554695347578078324713328849570165917547
    y = 23562855243036741971483019755920451178668156439033646756168421630885742869834

  • 2021-01-07 14:41:29 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RTzsQ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 101595390742706910501652963737298212490234336720582810382130771130757021627467
    B = 83106194310302585694579675047257396991332464730650419709350822799864148964035
    n = 115792089210356248762697446949407573530469464177135905728914374213618808860828
    x = 54333527754956471260899430087422839897913581942154340139102084967311954805573
    y = 21609161586806204499804644434865671617939267598330888237450753449341987839638

  • 2021-01-07 08:43:53 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XTrCl uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84466778453201442629195842378355904833937492451688753736970785740228246763247
    A = 76650745486505604754389175614657738739700088291774731439871199809832918746174
    B = 76772281479956778271589678375779186227216776961492253509617029129031551659080
    n = 84466778453201442629195842378355904834188281562182704361752071998446030148892
    x = 46238220557174684502843288702361654792586845825178625666458434046902576614641
    y = 63107985408545436702354957610057868778657517529066181624803753525695285730530

  • 2021-01-07 02:41:34 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_TLuE9 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59403929127147059589746715020918471571079344440500896180862150911328795033383
    B = 11911995000227238458737669982523542284885653574632149321735652588971501618839
    n = 115792089210356248762697446949407573530182349057980225759071777689005398615457
    x = 11082770564162717154882526729321568617319853113703185785137117440861342317946
    y = 36970127497130318775353479801116293576029819505476460010992260875719684314602

  • 2021-01-06 20:44:12 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Wgm63 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54292717452689088702900773836492351540496506191079413323549285492956020031699
    A = 41863725268539884916325609963143751160879862414874141218747464899838485459570
    B = 44085575081929261761070687364761688026818817835560508381487039610557917322885
    n = 54292717452689088702900773836492351540686805943902491001289459996623012137989
    x = 41261839214650441131273558059557080285024634129732726588397130031601246607431
    y = 48856095849932193178280071122033140977322119142668487971758097195387666653800

  • 2021-01-06 14:40:04 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mCH9w uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8803110082727791486519175288665018023837403231659300605904719830506934663369
    B = 63379338381912127594733188760396148947042830538713432606087037764307138380842
    n = 115792089210356248762697446949407573530325654462856807472927486329833182160772
    x = 77444628788874574283203100892212832741544667122622684786878044650073761519373
    y = 56831807772390833523802330107423739983065616593976765930608943795331784020606

  • 2021-01-06 08:45:35 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RFtYt uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 10435598055404907878337370457738747952419947604764896635592863070062984727919
    A = 5342246508175786733678005180047449427285771999885763049354703799873673468819
    B = 5603766736957630333755707640625756691708215188305771401803877803052239035135
    n = 10435598055404907878337370457738747952475090597500783153569111940240752048588
    x = 8249304083640930408386694117560731946571280749603700604668632165599620529284
    y = 5576163161529420635864026745570677053362724341629782778059162109345792693958

  • 2021-01-06 02:43:56 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3LSX2 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37646152435273134885165371116880826356018938774286109214105061378242809088796
    B = 98816268601581202541697363051365340392844426513509823537684457841901420586967
    n = 115792089210356248762697446949407573530026475849644616724619476553274706345733
    x = 30329621343391147811458183195837513668897294243690451226978338237255528242149
    y = 13208873269397585888768281770007599381200944395578182570901388514291280255692

  • 2021-01-05 20:43:53 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_hbH4m uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 25553509809888663350660301457169405077982478995155467011502315126475873947247
    A = 19593448220402789220913331102574006508356212983420072725761168240187112312857
    B = 10676407840146400617900398628519383730179127376731368045206523294456959254096
    n = 25553509809888663350660301457169405078166287088850291528814544548543939014427
    x = 8205097118389409595439323115389796089299891396986262418677025356794345359482
    y = 23336317363302624501040735193397040517086190044274297683559934227069962398866

  • 2021-01-05 14:40:49 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TW2oq uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59964042872819513989096656461772507118149622799161899392530078327647466853132
    B = 100136741749611671957317851062142885286501419623816715457041433453106831435103
    n = 115792089210356248762697446949407573530010206525107216741771101842380422275716
    x = 105909890294890907349714581939371345524133809551781239033521481123380210629585
    y = 38111746593053506399150300592986646345120157219824885443074579241141112605702

  • 2021-01-05 08:45:07 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0mRNt uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100884875230993315504169233821511579704459691536990151820422846997637700962143
    A = 13858128242305709564473199665917136994657250724859970139084022052518634698898
    B = 85668059989208046005850390368078404759598504727107690822075903240762282629945
    n = 100884875230993315504169233821511579704565215762389488878118447291757004967844
    x = 90286372144609337591136621630593404030111905130269845445050097754679261335990
    y = 64386744860065194769146173212248011824901875763800889671527764353336545228174

  • 2021-01-05 02:48:11 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Throf uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 34270369968813629908637922205604021614151880654350681627026497898539515814090
    B = 113623153883395327192417822451696193882373025760347353314641920991207488247218
    n = 115792089210356248762697446949407573530307180807672662676072677069005328441287
    x = 59485761585868234422802127081891745220433558559764563802986467270863227590732
    y = 74145152179552657625274191182573619694510411852165312878101154262604821296828

  • 2021-01-04 20:44:05 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tePgI uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 114639430013013711783969043837564827077116251977753185157049233888483210821267
    A = 2879939884715304390898543215811230359600227234322799490771134696575638366803
    B = 4141563526842257210592963064973584814139071536369843220145688728973753404865
    n = 114639430013013711783969043837564827077582168815355645707646571232903843504337
    x = 15903404487256418826408650999983652038365969704241594645249867052327198084075
    y = 110918092335009236847837347511717210352329734271728198832224822303496250833944

  • 2021-01-04 14:42:21 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ajABS uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 100375863428951680869712473414493954400948271368022722003328055494448374277094
    B = 113220521910318407110326601439224098719634270650089591755221618628866513690466
    n = 115792089210356248762697446949407573530741005074747615056113747773340216352236
    x = 49743880427340482333646273488320568980843440333949560169470164766689781385188
    y = 30065688442849010164888088203604622524274990580323776373210188354924849274202

  • 2021-01-04 08:52:11 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vOkqj uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30245393679715260614809240486664414474104198697983772795047460131296975202183
    A = 7420223223331759685380310665951693911231367169482665983371748931546331154222
    B = 19505014948849321924584166288823079722864236810010517341929237171541870534109
    n = 30245393679715260614809240486664414473817640022248911933966817594611747232044
    x = 11717453346563259734772090425584785263219486367473339540820965353083672525615
    y = 23111535303574510816923903237263016580001095866355069697209204437174674354646

  • 2021-01-04 02:51:05 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_blkw0 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109599349304551773504900746985364520856323177024453577059206531548007515196538
    B = 12496475653448190260157091076942060996085142470996535481296802482719411276258
    n = 115792089210356248762697446949407573529453423614584600794796297424724170244723
    x = 64523792239678125720405235013111541996479655027939346399341045226708899988294
    y = 8102305931623838250013956120415925077446534478092329985075406346118183669654

  • 2021-01-03 20:44:07 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_eM3aN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 61513332450455381390061763989668375560766516359364767571760623186709149226983
    A = 54791979254423149084311768421029315818610805528352618116710865849027028699629
    B = 10436077339513648317583101968231062955459497363475825875507013957123713800326
    n = 61513332450455381390061763989668375560671123959299885104884600765756358826891
    x = 41441729514849349076252521822943792536011251658012797500507086215916057436093
    y = 33735340730536227366298808414098150462379520154398066331395359854332855483968

  • 2021-01-03 14:40:54 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_teYBT uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30709714154294147674248399729807520085313502529508615236289528347541247136874
    B = 65190076020267583077560725159751256206421601308303562004053284907443738162736
    n = 115792089210356248762697446949407573530219970960810931454792753163292144667068
    x = 40297853814614281825038798974890536969202533451142818823586402900632288478400
    y = 5442642073855527810401558054522930900363399955104323633611379884519460864094

  • 2021-01-03 08:41:13 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nL3cA uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30055459767995772268593365436774791003413373230516989611307530598103413744907
    A = 327314715277562122899717857201014879898468372740119314503893696148763779604
    B = 25113736864401480454546981662850226323844738591373496699753863955493148149899
    n = 30055459767995772268593365436774791003348828621773050062687975911418172943772
    x = 6253688289696840649187117442758143556132392932664667649961934159144673321915
    y = 27213958717563177947521769248002258062045293427089073686404506567467819462082

  • 2021-01-03 02:47:03 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oRFqW uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5530812121868889506371144053002397581268958151866248757647591382512426319174
    B = 86767733204883698022362036897540613513616518560095950238997537781375504298064
    n = 115792089210356248762697446949407573529474929724708668141847379185577056365727
    x = 111832104898742455502958014507702493356477207061431768294023035903494077367554
    y = 14178649824523285061332591965153919065730008647669361626615748723566365150382

  • 2021-01-02 20:48:14 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_hoUA5 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93086158114412810270444757725894758173004441699130209135126853599614765615793
    A = 50738340348073729489612874288897415435026513314266396324240290795736095597321
    B = 15889059863660426602290380438738398689470172056730236695840578131315401376799
    n = 93086158114412810270444757725894758172635979169424228611724662702221937248231
    x = 32667761822393003107719860193936160699693436702813071428697892065216881915421
    y = 74504343360749692597652472484476500470145299021980638997423665016441228515626

  • 2021-01-02 14:48:15 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xotuu uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18312955113172436354709731270501670585725273016809592136922920207839843353778
    B = 35970649861619398146850794309011881851661319420714093666833571525393292467170
    n = 115792089210356248762697446949407573530464823003928336112290529911234348878932
    x = 50004244325140970571246904930242399837886823136873234742207695986169190833587
    y = 21845677837186183228131191553460257432609904118060806342901254844975892274358

  • 2021-01-02 08:44:00 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VNbPe uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 53386823353167547258948896676374256454439358885701324091110729046148537609023
    A = 39308580951978430065167388633304269042534949259739420741843887001346072538025
    B = 111984413209189201446342527851938947905488932258710176750189250427439577373
    n = 53386823353167547258948896676374256454779938522188137213725753065686056830564
    x = 15633787255000612223685496182022605676213431468499934336378291854655838708483
    y = 13523102924408437411028321131052573731689082517401612378397704858801988023740

  • 2021-01-02 02:42:28 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_JO4Jv uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3541900744596955957578339180540520828035766185099083974085472706668242178285
    B = 8902896807685745405670495284896727746003391522009704722919582012775283971033
    n = 115792089210356248762697446949407573529549000250427342787394625115300168564447
    x = 35073837213518120816959066373786625990492915525541245883806752282532638237370
    y = 7304173062640821645273049641558378686051523243146934094749028059569745208278

  • 2021-01-01 20:41:47 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Fhu5F uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31663620495138914862041416576164302020417592511070548211061350986024392524817
    A = 15524522894891240120765904514115292894768614909696984236674216474446299393805
    B = 16246432645766819382731149849277976818557534152503862437621184995868300136698
    n = 31663620495138914862041416576164302020228116835141118042052248811101641215029
    x = 782271688106704873963592695414617382820012030091550723380379047739587734371
    y = 25468569744590828724476739901661559608385557830449081104966131758207641283982

  • 2021-01-01 14:43:04 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_19xpP uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 73191393752734293158613814541181300171536985651052994507358597879450090946368
    B = 84722594717797583868020493361356642599917489644209212526149481223832501488541
    n = 115792089210356248762697446949407573529447558690200485829357205659626068530508
    x = 26391919474942036331982339157689633931734557632439934574463003936917581523743
    y = 16262045765602670048216523451686983781670378837921790374284200299814903576894

  • 2021-01-01 08:42:55 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TLyTp uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22448253635385114725356774179813057343820526650441032823144886526320636349511
    A = 14312008696254095715167513663973991650480855741007486322330743234781886092835
    B = 16653840789003421704665813113643106622152914673761815564394174859088636425742
    n = 22448253635385114725356774179813057343571442345851939753647967450745526914532
    x = 15618797042561319754880579637585745665618716894179559956503821386977683904795
    y = 8267634098934524740472414167512560375139578259204805038407550382733883141358

  • 2021-01-01 02:42:34 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_DfM0G uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47001493636687647579402132757653977649905601202505924159867454279838371654985
    B = 29549014781172052194798042779494250769899392025170681451890414724374066351465
    n = 115792089210356248762697446949407573529984945160477180221147130494906021085683
    x = 30450206113439202539710728268979608436069767396298222397623314217484009514105
    y = 32450033287166655297848381732412122251859810538729165835418119907041908824396

  • 2020-12-31 20:40:19 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Al4d4 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115269317398966056946915142282073973227006701840561576622665223349329321711839
    A = 43115547962360940527180036852193481121805164471754747060551351654161348426165
    B = 54411101323919193725445929073995895817092450098387118307028451412002127188426
    n = 115269317398966056946915142282073973226705779715542095268764842858649633355739
    x = 96505804319052696762532605578811671854892389275346702605789276555873641301051
    y = 78031576392550106006409005142993842737315142308321434425095183377247065998024

  • 2020-12-31 14:43:36 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_WmuW5 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 54566383850768867392466341276648898535013167332716171299075611546784337458091
    B = 63714498667781046009423740687293779717128709705982909173186517105689130228127
    n = 115792089210356248762697446949407573529645998968785471581764353608343934863348
    x = 92521635373482630961402705152239708158235333422481900888890881697629874861221
    y = 106505795906208102241366276794427099582786168546243701558911214099490539742088

  • 2020-12-31 08:43:14 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Z6lGE uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8557718394115287606308112446449150405896507058540281914049239504189627250871
    A = 6132150531271503450128512233138163765084388777495306910995077284463618779429
    B = 3177056097453095622590785898920842123767639410552603957010798276266549666940
    n = 8557718394115287606308112446449150405913022592155220633508191447340716678436
    x = 616305821830835700196043367226319648988796963215559909686887649644292370612
    y = 7602786084807922571222883965622793886113963248661538716525867735475028561750

  • 2020-12-31 02:48:07 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_LNA2T uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 74488734513778126066382182739242587686050007957109750648893610667703763628171
    B = 57644721576175093060359220668379457976119418290204892216142518096904213475337
    n = 115792089210356248762697446949407573530065320618607630085144706648217999112977
    x = 108259958413805632126884281192226061156245004659739823810867402331459355832787
    y = 82002055893136701891798734925024664730534861959734889576580526581513451914398

  • 2020-12-30 20:51:17 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_O22PC uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 57355479658610566278850754625411213826852821212044321403641756767056053041587
    A = 52370395736116525562590231730093560768871753109029519443922229451725806140626
    B = 26974945423199521424324451743316755215256461311883268673056404602784460240073
    n = 57355479658610566278850754625411213826596356025364724639022367235210584056169
    x = 52017054942385521147276008799828480252280578672285336898413961988509458617204
    y = 19709118972523409292782569143475630524048456365476347848856687709865191380822

  • 2020-12-30 14:50:48 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_h2X5c uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8131238477104738876705699416594964859514486346326703783235940509671917120153
    B = 114154016848763952733105050346641448081700119602975613123102141018225174304101
    n = 115792089210356248762697446949407573530639145170023950942300609192401589757108
    x = 76897761582055800203006796711345054744514217909672666750728371750252715388858
    y = 41723140746281726244959074722186902548958926639903236616824786516212734937438

  • 2020-12-30 08:40:14 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sOFFa uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 26555431643669128534047766694383247635744393813679687241365130890428504188223
    A = 7421908143515803172121201841963423125318159262662314787030373124425590331131
    B = 14969893542846913226033374961807555379283965081386897633048387785858192001739
    n = 26555431643669128534047766694383247635995220014867744160317090789606624442532
    x = 24930352337333955977373254957652777532935820580456380346840803553239491745125
    y = 10454664385961184776577762073910171283654104838836320923592392069479886365282

  • 2020-12-30 02:40:15 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HXpQC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52588142868818980409076966222936052984049290608358624320462630554753007044314
    B = 85194651979451953111799661734237128873155757786580571389041851835939124786726
    n = 115792089210356248762697446949407573529800717808805353710745057275122763810733
    x = 17479856266461746730397518277948638937764002959546106839242639552846113244520
    y = 7711593016769564658140353451060930888487529890503900988900534711790868052178

  • 2020-12-29 20:43:32 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_32o2t uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34037599423904351784916022157992626711014738474116062185057161130681685005701
    A = 22578289663575990438858173643578004068468311817261821080275503860492412837939
    B = 8354311063036080555980509594538502639041008848384898250117505474116393344686
    n = 34037599423904351784916022157992626711169630408436975627826201132962458240591
    x = 25491125892636087111327984604593739744062728474705189066848319877871790773363
    y = 1998953899042908384955814700714474440693803404364035892693488011609742309862

  • 2020-12-29 14:42:24 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TGXlb uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46165812650911519259757197950371522616564175538204437858283421367610742894322
    B = 40424087816576488215058703479757731354962217378868059476176982814295657887967
    n = 115792089210356248762697446949407573529408311955664773851728313334033801244212
    x = 28285933357852042185341188020649078580520759772881457668529719356419329181403
    y = 113406434560787703652107750987635372843066920609578567431121348837610261737330

  • 2020-12-29 08:40:43 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_izrqk uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89017077102524543314873994971041090247993112119502958440426948033397410011207
    A = 73959778968293824657209538408787456124703741076661690840148658230908756248834
    B = 86935659104912377074085965982227645446155459898870609545841922287060165964370
    n = 89017077102524543314873994971041090247758820082864856201620533538466150181244
    x = 74022290753318399288490772800573125634522709196567732105051929683155969911346
    y = 29721693407888123724284199294281042776897677334407219996047155287839729629490

  • 2020-12-29 02:44:32 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_jx0Zh uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 104664456347051632035670602320182071031809221291478431296312842532182854564473
    B = 47423635357177397862400402205440777324709762532393675699345009955376893524938
    n = 115792089210356248762697446949407573530181210030097581507117127609959032028037
    x = 62711703317477444102555513886125197483649092098447401621729622769760997810552
    y = 95201937615112359492429105580913815488752619893387774484694265421291560395184

  • 2020-12-28 20:44:42 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_4KlGY uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115743985020609913970921851277297349196555778221538802745760480981592748826953
    A = 43633956054823914320073163802640229374463813430925599839228402157560427347756
    B = 68694938192633317639059930672241433605728641582251188984332959544046461208378
    n = 115743985020609913970921851277297349197091571408370635664718525452634815680247
    x = 50813408850834023428950017853448050458767513749351880748284897907887169475516
    y = 47534200569034532739178526570323909195776152831566281003423054420390805895774

  • 2020-12-28 14:00:19 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kjkjW uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 21838758488301164787689600079137870005373246494791493138294041977229447607918
    B = 74457961994487524381080255405717947446016995405607027453545559741485500667562
    n = 115792089210356248762697446949407573530610763668324459207470535986801469518068
    x = 28664117188211506145823183781655765067262746945035275178052181680700499825962
    y = 115329170436658121251424004363877191102088413424221366335357406349890670520802

  • 2020-12-28 07:55:25 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_g4LBC uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63660992725268696974051716984121362046882815310728851689753304820539948424259
    A = 35459340485011783007457355439172707382816934210854050308323893046709189921430
    B = 34714101179958673446465746231502055596179601706216773552056309537264946798622
    n = 63660992725268696974051716984121362046861732239861856332816695996056120075244
    x = 48678861297296755746441591125434057577171348932246401838698720285702548973618
    y = 20422334472413070577528549041463398450918287665636564765603726227522861128098

  • 2020-12-28 01:55:56 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_JgdIC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81096292132077123258748089993529632027186716694344167486957108140161889907490
    B = 10753272585421075391717141605742523975646537061172413205020955419694129348420
    n = 115792089210356248762697446949407573530598296319464615658707253991262794261693
    x = 89638600668300515903502234236263095295933508872603121745803420313399166632566
    y = 113033467509890843832427377783735377518765984249663492638386250820036566521322

  • 2020-12-27 19:49:07 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_18Cxa uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 55153975050485233876113908409022239836467272304189251096547848761507677690757
    A = 53072148360885476768905291611775713341214731501136574729648204277349323755411
    B = 16130566052394677674134004566154897626828774069683830019851543118162317756398
    n = 55153975050485233876113908409022239836424531093021528939605235683637324046799
    x = 28604489112318131097288691762852520895213029228188064212200738566223599846186
    y = 48802589608138018638111279767462291146595126972092663522787378254702865317996

  • 2020-12-27 13:49:57 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cgcJz uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109467666416960952052276364647240228466655619319963409529564084708273667532483
    B = 107101221856476078222842331795331717536317955243356131183243051051704894553565
    n = 115792089210356248762697446949407573530121014155842650443208592212417645380732
    x = 31789370530835403107867021469383718659831178148274469783490013753667731708997
    y = 113962922348463170598897776058202443770441837725775368096442025296084260382418

  • 2020-12-27 07:48:35 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_h5LyE uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 109982339256030559068562958324016788111142815347782119126610038357058752664467
    A = 58938010540178520606538469122419338512352381585360558518679043935774726955738
    B = 143632219158182908001506762526913658506778163410238428971814993496919680312
    n = 109982339256030559068562958324016788111725699640209017008047606667741889285884
    x = 53990503812397441738758842614361093232707379923923998461407952575757453552436
    y = 3633712235142442362756459964513732633330532358421764892017114377594493519658

  • 2020-12-27 01:43:50 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_b3J7k uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29511436813611800346737585902596318863361174927015187592634621947997479766175
    B = 48336124326081668686878280567898285993891070074708076314648875982883962610604
    n = 115792089210356248762697446949407573530093808419343149565585183203779278975307
    x = 77590535087142485712440502692025031603512787463987023598872996978876038767277
    y = 114100825978895702131549324588789671000037890139576654902688303434231955081130

  • 2020-12-26 19:41:30 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3n6jX uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86083907404140242216988027459177075936128199285007773391524282482824419709213
    A = 66967921766442040231707521859408987575259685568713497135303209481640465008881
    B = 84138566673798339560545282975056191350934219956004439617641540414624823199204
    n = 86083907404140242216988027459177075936011154173197410264232512243669781044989
    x = 78889966157619071578806762459627083860461213779678232856766877627288642912781
    y = 42085022124200592527086136499086006038437674342676268851220629821835061949402

  • 2020-12-26 13:43:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ElgyS uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 114243686323960437406833285911613500762683841319357394809897728220437174766789
    B = 37011132115631352611496503741133840554159732834549837145192655800008045855910
    n = 115792089210356248762697446949407573529533339302331117060361576335676332040612
    x = 12444841815086076824224728649938373667699847093375738035797743677859731488562
    y = 100968525260776085028394900310381556230609936211999730489849528514396431929356

  • 2020-12-26 07:40:48 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XaLnL uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80304975757414948470963363845171976687166187525050437030004299263259387243731
    A = 2352055568974427618338855542217116940953140303382651334969274248145706954977
    B = 20022609109235074176708502174764958049113666346155084386281404441769382444499
    n = 80304975757414948470963363845171976687029201292786777302796305101375136046452
    x = 17692598440609089032527919974605924845688459787698325435444925975555800937279
    y = 32262632596841553292437528790503834572288168787723308668672100335953605794920

  • 2020-12-26 01:40:01 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oDJQV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 13444870458753461881670253949936014077544074688852588294298211673293206781644
    B = 70381133375845959430728950998846816494754821752301195475654316120074925486491
    n = 115792089210356248762697446949407573530712614080261637939420164900166903827717
    x = 102535334584174882066348756819081909666700823319856239041385799272499100921000
    y = 110318623766641109348511212443046640883198970355027660082380144516457050037884

  • 2020-12-25 19:43:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iTie2 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100743810786977952864091797689459239158981332828910181177983560121424953437489
    A = 22527278499589748460736918054393562805107588739027833344550276640617607446739
    B = 45222187371525961631855187716997507213109580426275969204516450382078281015296
    n = 100743810786977952864091797689459239159234961297130593962548012210291686873107
    x = 27195346251389688387470812161675244478521910247953534210442466460314325893698
    y = 57197714502766558167082116780093624441168384427935192338535269892709212217742

  • 2020-12-25 13:41:37 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_B4NG6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38866908621004979237064775617788620088418911510369561072501384935058260044126
    B = 39540320073741134034514755735454634308830207456299576753903101670389583208670
    n = 115792089210356248762697446949407573530129790526140675001443217794014800839988
    x = 74966845824080882321766499530680695686040869105075495184779005052736439204249
    y = 327671154166158889659371095824611180943234242914484473108643912220329615334

  • 2020-12-25 07:02:34 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YHL1a uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8085041930230254890234462610725297528205533407653967564358530273251085082471
    A = 4176990360908513355042900040559046135065541713447569927776284075945954368061
    B = 2540803440674401919394823222981402396972719109533381407403535362986774381728
    n = 8085041930230254890234462610725297528115667529441443468670674560370051592116
    x = 3773921053789460928032222590095262916616781610187145081930491222311545451602
    y = 8084269943513301195835060213042609365433645693551501618838487283398899197934

  • 2020-12-25 00:43:53 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_kVaoi uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69653202043498300662851337369541614383045520864725062500312000293815283386935
    B = 20104345682856307979345373260336973400867615298589947749472315446170989214913
    n = 115792089210356248762697446949407573529980359779263056734506924050159572357051
    x = 17754509627748874284637512067150741869574759076460941124899909623498355987362
    y = 52263406002735215261861908026772315606214835663785122100165939185191988359562

  • 2020-12-24 18:42:36 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NPWBg uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67514769027321378336619254929103279430089606108601206704409379018541176781951
    A = 39729299270213187587069151962656735369990707244507694011102788420465006860934
    B = 33811317103248098263811735631008310545185687698071588147211745974604611418069
    n = 67514769027321378336619254929103279430545688614618863871103766180088969544193
    x = 13016590166490456900808078775927763166470157004894837378474939934825694461032
    y = 15460798051473524417470990145025152169217721701990270966131592593695466296598

  • 2020-12-24 12:43:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_liykT uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14344365125304072525969566735654455680847145183660993896986041668609703130920
    B = 113400104963245824122448481962904040765219414038478048642012523683287306593368
    n = 115792089210356248762697446949407573529646429693969108090167168325775021160036
    x = 91348250658875234641948308985317695821169293920560473114605937167670138379111
    y = 30661569698098812885215120126612685660313010094041521118936193947635645848242

  • 2020-12-24 06:42:31 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ve2Zv uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 101082523244412802092871692045241003933817737583292234221010514396541196012343
    A = 10450576146609643151221160974273648577430617196643030602742680275412910495638
    B = 49861846800306677466085962660211090172014369379347021182177531172786254213712
    n = 101082523244412802092871692045241003934214487102324196963732036125288370567876
    x = 2161983336866371086921195602794869856261993622704898348651656062075380694538
    y = 94442729624211342313518054033210042238002165110195645949134139777546490261620

  • 2020-12-24 00:40:08 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YWRdS uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85931098908136358697487895953983189339645583242612885656150862049436148994449
    B = 37132036181050902079643446594850256564647173653337478631502338908577224353061
    n = 115792089210356248762697446949407573530112064137025081817996722272165340190923
    x = 24337152888594435980889742863054487728596169711082010993638246816115479550909
    y = 66813897302224790064568152332810871909235563807620753729099518388461510361208

  • 2020-12-23 18:42:19 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_WapRj uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 14331190928141261579734210439638078438369326944734626373663962341487961161527
    A = 11362053124251400661690646531155524609393829315695943342070369018437897046423
    B = 10033047691181600800122873551359296119066625646830963866566665167945970443184
    n = 14331190928141261579734210439638078438342849199503898357883607982605164515413
    x = 1447992736983201635392933612107399670535244821384513112201783094482027211701
    y = 4091791960500977532454056692802301176086130366409088385879112431843673809736

  • 2020-12-23 12:40:50 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EXX4f uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 93099694376754458958409382231816335362608617653975131584142473624539931860429
    B = 12537306466834093353282109161454283770228770880615976405427782121881684867379
    n = 115792089210356248762697446949407573529969255006849111142580406831558618676716
    x = 59145841934570146887831213441841672057287537923486882310594989443609341319613
    y = 76305392248555183047949699782943596028834589970843614592756671401425186478562

  • 2020-12-23 06:43:16 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Q29kW uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 87536069210430298071475323999338133233344214727104398559497677486714261359843
    A = 22878542701248031158937442389148379357398821804296373692638636729005241998407
    B = 82964933683721317112313777167683659727354613045898372113407230371093736937091
    n = 87536069210430298071475323999338133232842812114325410778938784866379262375036
    x = 44019695151079241401753533042044853129845373293216537033950579426729328039574
    y = 26738498101483715297400698373499104729358445763725491079523363618026612141126

  • 2020-12-23 00:40:29 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_nrGjg uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85558899937730438252125105456964712939636610669540268009610422535936249002601
    B = 95000366765360631209067518149127391961398946762316168935958612776281958245003
    n = 115792089210356248762697446949407573529694598290921215527110360538093887181661
    x = 14151145039222922722229010350604098007301934742055254815900679423829080179793
    y = 81684029641414342963468005742220471660384319258683383169134065958846660653590

  • 2020-12-22 18:40:43 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_XnLrh uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 2038258961933955821265048341020299998974815944278605940217194623574857948437
    A = 642691199857104652007977940916335287634283549723956904553511101798002146547
    B = 1943549632936139771874954201106968813173424858450877348475245651698240362561
    n = 2038258961933955821265048341020299999031271097570634245154969209412176443917
    x = 1065075648881893495220573763954029867272810357309899585012380922932098064825
    y = 778263044553242636371110811028255894478906950463357827485307131435043492624

  • 2020-12-22 12:42:30 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LRzcj uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 94525972277265339832670720881246222457852201004827538440101472864365746282568
    B = 91751600211229597504532986536472716947821402584605250256296160181348200525482
    n = 115792089210356248762697446949407573530531855868129101956672074574191531595996
    x = 45161505169776072760887341711863573885150121719613611307896429007367349404309
    y = 46418741932000300229028510133062720307752290107704225017117340431937605964302

  • 2020-12-22 06:43:19 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_aInd4 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92971749800403578077571598634503039806006037604534080721044105640978346288359
    A = 14841774535201358292434479752424842384121233368149023145046671618291427907327
    B = 56880787124439353627575767736038000070590958334828238293609009479229036868421
    n = 92971749800403578077571598634503039805861724861159022709074391972941009650132
    x = 39391604278902417975244581349887205704539779028118180312096185350077171110899
    y = 3610116823846439594667474907480419936316787513770940332651609074305008114238

  • 2020-12-22 00:45:11 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_j1ZJn uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42756446789436247723611833833944493284671520731327262016026112402825061277866
    B = 69801962184471366396847751001216701821965947571445275574103537301969788393784
    n = 115792089210356248762697446949407573529986227449998125448212592047270738639581
    x = 75852201938717963678562876627213171272531235514908996770231247907260857296980
    y = 114862536020774192674749167318034288607645801994434029331254960193692697159524

  • 2020-12-21 18:42:57 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_s7zL5 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34511299484017015077706322836888926460024404707900178700162230713403811447783
    A = 15308301989197826678854495347622171887545253327369664671744721518867485331256
    B = 5756048461311496511206398141238568387156654048794840033138064938181475936004
    n = 34511299484017015077706322836888926459891118971218160272845341668263283931059
    x = 3954126891930996720134181277141038837386317863679892097632588917053257545188
    y = 17924841754619858329218069304379337890319530328221825371642289718036481342708

  • 2020-12-21 12:39:51 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vZWDK uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18370857517093045151986638203877852252716552051806834016979797117551928248943
    B = 31221414041246266760302391658864165365842533104418088194307884305371561697704
    n = 115792089210356248762697446949407573530190093632989439223899448148471144787452
    x = 23486983036212127665536670902810214052064946884865717855507098656777802340640
    y = 67902265492367881946386800556739736334936778202675053649696201180602155766924

  • 2020-12-21 06:40:20 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KepX9 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 21717115214580020527245592580932424622852862060696203418041613608853545769643
    A = 18110483317292717192010292592703655666352451241109868377704732784336224969728
    B = 10618476549742033221349138680834786632145320174788005878251571108878015617240
    n = 21717115214580020527245592580932424622649491945308449019721676629372053962852
    x = 14603039750752762290784413698050758536095969314053490666913540882688329039261
    y = 13314191946669737154328897958623867236764105863492965219314064090894804761352

  • 2020-12-21 00:49:24 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_qWubH uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46309178992795907451257727419654154397686013755064751695868804949349086134738
    B = 3313753585656010384305506566622785465570520026194619510428184686884085505668
    n = 115792089210356248762697446949407573529819130883038117367815301071080922931253
    x = 27338184189191786040309848203941820091954231709911682435143774920841584025304
    y = 149946893390691052858516702428636206752265146416106444531836192858101322884

  • 2020-12-20 18:40:44 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_C4z1z uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66935245213144778198226543954426926280094016739338123604921777958167860790979
    A = 38461604310507600298201323718154388019754774995182433331209321309003660876561
    B = 26542629729057678246639816347608663194510166514230997237094727612124968951368
    n = 66935245213144778198226543954426926280527980939603953868892709583227355695899
    x = 47136565409554073953596205487338791433129962909973761301937827713130823772361
    y = 14197753605113154504281401346859773195259089888083913443774004731093975590330

  • 2020-12-20 12:40:38 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZaDNc uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81986293036799117617604839473983524680485228031116379148079413523929253348224
    B = 26179003079248082234727314212639822761020885252202220866859867913752722040079
    n = 115792089210356248762697446949407573530444626804757593639472428805480939833876
    x = 69556513906686580859136811489874433447616797554226074762322862680230651265622
    y = 73902881853124653441050425921278725923766632456271126840242237298554775389334

  • 2020-12-20 06:44:14 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_In7sO uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 38864615224023602607802418144904214568976344678519058053229141006748699726031
    A = 25184907543682377642297818208441751933228932978945797208487992347000806890311
    B = 31180356460660350756223456261570284598411904760456796446123312498558578505531
    n = 38864615224023602607802418144904214569104917085194791925724694197067560026132
    x = 20273680956764964266509545483708509704227920184674722597062090385012302561321
    y = 1650888192053208182816139029746631941053756302608103225509647121678190982538

  • 2020-12-20 00:42:28 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_PzjUh uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 106377893329376777158886099854747628727299045107518707509901865935042122743
    B = 44364098318477671976039552336110826065270250256419541119338394849154283164711
    n = 115792089210356248762697446949407573529973811672669650438709252737379415790653
    x = 112797048509965765197462693371219657562539097439787927539347892565813898128154
    y = 33845186973476781362844199319378580647798821947601352334045826952235390060928

  • 2020-12-19 18:43:06 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_E0iAI uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22579061318711784748491889649414606188512252420524164674955424912589380964239
    A = 16974801774480676503275813769643356229937446413408727076995288573762750126475
    B = 8300325156421850573036820271604793028139702606424186092685661636151030956529
    n = 22579061318711784748491889649414606188399550726325811534296992363702280626939
    x = 11999412486462724252998766477361976663627240977309345918244872552208581273857
    y = 11650333489928962869136652111175666438266992550477702324754661436677404545182

  • 2020-12-19 12:41:18 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eRwDO uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 24600012733191507698318730664048303694746638291201392017625304150670259429916
    B = 70746141616672253994326614273244118349254156479963522747734392777216140310678
    n = 115792089210356248762697446949407573529788114146044978753425413278111397794876
    x = 13467687099609271746157993010969734166200333714705925956181526845730906233101
    y = 52230493191328596251059181611647177088203315820194200774910948179571780836964

  • 2020-12-19 06:42:02 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_pDfa3 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84094315952266814940341633779657946968681918993900355892474695674341345034703
    A = 73343267718913982051343329210896997770018007518477231399413699848021966802123
    B = 61235562554695324506922096339594904392215124708294992009161360866143144552477
    n = 84094315952266814940341633779657946968389605941107978041968483714202539640036
    x = 83168377383140822879278732567069944880758177193905735676706945133435110490921
    y = 50683350587044451923210376954132955248287552514822237691102692311761406774702

  • 2020-12-19 00:44:24 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_iw5kC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69447937770521671950531300181278113472618998912433379370803168437093640261096
    B = 48321037151085143119065728001601237367250688395824465884706816679955224431696
    n = 115792089210356248762697446949407573529646087288501112712813894422295957854811
    x = 21916000864021473360632412466476098040229626649531749166703934189858937123947
    y = 100407613099645574367909970236307175915931574445276598933498892317134607092666

  • 2020-12-18 18:49:35 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_AHrxz uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 21803558048096381824861683255058152866436603233623748054389183041490743648047
    A = 6950769954654897659479394684307792118709760635457312570137006820441006583333
    B = 2859677728559301348043482559447826795153465503351514544101870293363760548554
    n = 21803558048096381824861683255058152866428787732633560230161231593362258114817
    x = 19163195138683991502175885268831167132783533779211469424184343811295145511716
    y = 8158268017330168509509529139228314880768074521033425923133744558085024837890

  • 2020-12-18 12:52:33 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uJSoZ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 76532044488876437956673074323030147981176214446397938857084858293877196187775
    B = 95248417203970389910864845142166666622040512375661694535011898713017683029527
    n = 115792089210356248762697446949407573530043768666068333751988665523031008062388
    x = 1996314600407035350268038092799620769812478234821674491539951808969056306080
    y = 108605845506634865167357801764116029634311639177414439779949856596142243416800

  • 2020-12-18 06:45:42 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_dAMf2 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 46826521781030758887075842135721570925361352498789878689705534773538478691071
    A = 40360639896971914340345339914858447637446721998348974609725692486357534698518
    B = 2136635692422897600126067105069520590020617463083775280973666694324670571252
    n = 46826521781030758887075842135721570925103983845389135945447791661571784811468
    x = 15609637029764513857955303399900390478151985642415561501150328544449026259290
    y = 44279352903352416403440988227873481893874509590897757285134376775895395456436

  • 2020-12-18 00:49:15 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_CmYMF uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77961134954172175478749354029099505990017623838213196958720175124458217105210
    B = 74637759405880002683584466252966420922792872281531036470939437110266293527383
    n = 115792089210356248762697446949407573529988798442871990328690924125852366944097
    x = 64157975026258003487701033345601099982793496292344975400125768077674946738254
    y = 26351110541778546066419002218820462859737895491138203538691069457834062145308

  • 2020-12-17 18:43:15 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Jz3ft uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34525848851168599771904097445953752723854949974361204580279077169853411436209
    A = 25298624593244865819910875804003483366086237412659273218312032439103302973337
    B = 13415585339217804591316211234672044399529158199037261066529119449991123865382
    n = 34525848851168599771904097445953752723828809375508006611864180430735755285001
    x = 8868624090932773247519632212894071206065123965825715931684016782401406393660
    y = 23862566480373707740149273403901949660118370853869584647953406066274042708062

  • 2020-12-17 12:48:25 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1xk39 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61679634255951515777937615020263329314887451739616499880515302724623753285277
    B = 95810655889852692318425635311985052633412697057499229096754409571704793230932
    n = 115792089210356248762697446949407573529661152532549652860013501931231842526372
    x = 17190612434977375708273074989216258914986707154186610869135426811628387777399
    y = 10701839635189809385122286487907707746626979711494562809340499715395768478698

  • 2020-12-17 06:50:08 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vhQJO uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 70079826515064891403924303978696270941562146840587438631560380133098760130511
    A = 49668513618785653065438861506050452286904533638936578194619346995601663861442
    B = 36258476891215955107515045815923086586285188031472750246105398115525965081316
    n = 70079826515064891403924303978696270941639675145786565638136178537825680888132
    x = 17800823384335349301046673454091470213149310761829375744628009072665663442988
    y = 61037108063959493166875739342064690340102076001789272103023415310505450940450

  • 2020-12-17 00:42:21 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_rrTLO uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 67191057998860478796453013965293358308611423626873256140016378462964211381404
    B = 39340073777201821277243575168239135363559962109702332876153842297329967948531
    n = 115792089210356248762697446949407573529720248369319172157845742746942712401161
    x = 53614020989895380589385208476858546315356510012717774781692754938347384103530
    y = 50429260631301039250203234082852831985383272153795081341673116929399948661252

  • 2020-12-16 18:10:48 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Mb41P uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 69086302415311637954185211890155638839863121312103448498440534281799884380199
    A = 65154990042983628843694267786413679879370245500835335341153470451346503084860
    B = 41733181327922965452691945397272234053541528882022236190779629688230371263097
    n = 69086302415311637954185211890155638840273462091188745701222161517947532671331
    x = 35714805185118082459053000449610627557955128753161942686465363715016977035316
    y = 33807086055763609943423553279753075194805221433810152777950517970058787928234

  • 2020-12-16 11:47:00 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_P2eHF uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85257998928276376894065315116809162713171617959561129841571981961322141722666
    B = 14635688870916146416129864404869537730507201331131106773959155315535020218158
    n = 115792089210356248762697446949407573530122483313456666947856770424918643791188
    x = 48274798814127135096557839799262369454500274294280424253857846139731741337942
    y = 19605551571503364546279468763330747028836470528157320993596703503762122402184

  • 2020-12-16 05:40:23 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eyiHx uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103661025152925251823056655590384805431068897857239047202729082980361960784079
    A = 83683598933751926996082762458614599657782777954146464822195404783265917612933
    B = 20413271668564542086035029789259056311030574172095930970989004018939147475812
    n = 103661025152925251823056655590384805431660179043437077887861935454776737300548
    x = 41926875970316361795817802726149866346355757161348109170720688552403846777513
    y = 63349053430486714552352928197809659966573495229629816125347641244335438438866

  • 2020-12-15 23:41:24 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_FR5Q6 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 45531567478992626884056291301086080488103677629897597550117233498211117973957
    B = 74352811902117964459798482960777381328601017494912528157381565919688793653147
    n = 115792089210356248762697446949407573529630683739902452897496776018209059487987
    x = 14804277160247292314567930861926717109025022306193769397403867204011378010298
    y = 51503511742030732327295415952436103192807154410620437210606900665199895591988

  • 2020-12-15 17:43:54 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_89vDg uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 96337974280504867491659022606707301888854740989158461673738612626377689712257
    A = 94717082101586784371337227442476368306478926725779963138028216724817430148232
    B = 36091141269958295700417122228740229731371457970524534397070349688260218579191
    n = 96337974280504867491659022606707301888321697716526525266689374361949512497813
    x = 51714887741974592296364027690317921655473723136526025909445751651759247596320
    y = 32350828098464619258617889028280423927054836845329046000476114226073243410420

  • 2020-12-15 11:45:17 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DQ4TG uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37539282902873901656026249986086661109919018681885936083113050055763609276442
    B = 55825514224916800910287026586968184366421446722970413061696759382074040376061
    n = 115792089210356248762697446949407573529768628038874678399024723451909027137332
    x = 93096275502249802373487328581706568126314485350366556485978694534941220064852
    y = 23558054600886867427458261707001053725556041333291464780394501611321012776328

  • 2020-12-15 05:41:27 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MWucF uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 59291676271489351220731375845464632199825688498035207803430378394198529914527
    A = 22370353697187126661698958807041675206717814795322125482982341403670401558659
    B = 46397448341390256664398048858644044203999281754029128967749246631564524936856
    n = 59291676271489351220731375845464632200093970505546266407404902693647753406804
    x = 38145634371214095747347946004585283075249312354058425991766038327909356476521
    y = 55327967789100147139908569735775562813392037015860046109417676870406052898874

  • 2020-12-14 23:42:27 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_KLpUk uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 1763632889474354282471196742861719940849985614798761259864033864344051781705
    B = 106542003098193045508757648191335307699618679214007916142561615458148751391161
    n = 115792089210356248762697446949407573530242778448720528872477236899166469482333
    x = 66142888882266435458071430020862599436443613946184634868142540479601742810573
    y = 109216075110737743950714270611944820099252071592236535560481383914869236396492

  • 2020-12-14 17:42:11 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_zFy16 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 3669969124973245133812029096568543837257271127364023807965529319769647264071
    A = 2057912309742435996788551845679569270000539660326708857821276654524350046403
    B = 3338097189710189453083242855814431766034239208215493702443201199497813513316
    n = 3669969124973245133812029096568543837256362216768100171001226064218788350743
    x = 1741675179350746133243877855877713252391123201880544829869612367730179273918
    y = 2173610000543812614247499231434403554346178650064669696514298919355167982354

  • 2020-12-14 11:48:34 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Wq3kD uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 32316335512590095678104146443535303075413665751488547683137949093413624923182
    B = 57618748843065060459408040325580158650091221381877736714081602121668981671675
    n = 115792089210356248762697446949407573530323344781397013309272083955828056917916
    x = 56631736301735191797447268348985500940724114467689262296330217059179025910000
    y = 59220468236675416913433534115924449082975440387941069526660860204224021228676

  • 2020-12-14 05:39:51 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_fP9qW uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 85737417515539826062304773265694259643012285029397265027778583736839404508083
    A = 80152363124840431837958316914661628913565047859784819155266934419760759349664
    B = 20306130981746158465141872270581846224095207988067350516329564448428954953628
    n = 85737417515539826062304773265694259642609064991837164874312787350360937375244
    x = 73592949628288330078794043869642532076697339172822511340379422192388367183215
    y = 5572035081127679387713122437322535074048770514003785725050634557422918285650

  • 2020-12-13 23:43:58 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_uxOnb uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 6603079021904176575946857480750378015697294644908132093179863568190597349780
    B = 81893377436945428759580771725276946192057757988280663108735125723736542305657
    n = 115792089210356248762697446949407573530512191417143698323283764658786556700277
    x = 17745031232824949463146277592630333273271038769823564683908386457237568812266
    y = 15709967058302561400801845631540776441659854869681675715446236971560361900346

  • 2020-12-13 17:40:22 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_sxEAq uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81632313535560662227573878181036598827313489666875507454808412030415680355233
    A = 53118388174093987067647105046173658937304812747730906033214215610963033127813
    B = 75724869401440522365409925648611594680659606025723395975682556745111118383184
    n = 81632313535560662227573878181036598827740478400126676354301616645056412878007
    x = 12972579507245308894229660642908707160456237949418596890021825520023269078747
    y = 6913155670734038143289254760874290547154844754981912835129153461708946659158

  • 2020-12-13 11:44:04 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_msjJO uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85382516257680836671626966639005723340351490107557972345167286695224234196987
    B = 24309536931880838456899371527060206907787923205035907267356302483398604398220
    n = 115792089210356248762697446949407573529726146796428787841885526569383034741212
    x = 97754521334248867880340231052459076951013190405742152178473050543795939411269
    y = 102878447138806710693825711825588658163894441879812496387740696876264267604702

  • 2020-12-13 05:47:19 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nfqIJ uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40698117930346092382628842629841643671056820516988202230480002294907434950319
    A = 10425959015361196788596519339343377172584521282180322731185925684466568931698
    B = 8132126931611630709607160612789426537905924663196363871085621816951288936486
    n = 40698117930346092382628842629841643671395118404435919305846613525052555782316
    x = 14477755024781460695517209287673506044874304077377351380012069215477598873601
    y = 34847074497594213761748381218808604289466593900567162015563413628626515397714

  • 2020-12-12 23:42:21 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_mMr0J uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 72193441968676161848473413254325701682868940785927208499479272578162213535464
    B = 95653306933824623889387032137818206103147652955572351908546650974423024088503
    n = 115792089210356248762697446949407573530461527746738168004670438701745021698661
    x = 107651594980002993032996541030822410630325801534392870021776876638505430139198
    y = 43037983831041722561054023830990455716808913079549523273076347080155554669536

  • 2020-12-12 17:41:52 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_W5FQn uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 57811865991465177587663605510535016326461031900852490769898531076998394814979
    A = 46498832189751177081413130271071507165163028296943179686822372979732968594244
    B = 7850698042753932298716408797381638364927619511895070410534659254028215743020
    n = 57811865991465177587663605510535016326435573484190141418337569971530968838811
    x = 7097563907758524517001735971266988890309253204064703105351039972758237777912
    y = 2551025853879890790146205331658348611265605679611248044956210172884022862190

  • 2020-12-12 11:40:50 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vOrmE uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 104572299794032546080608112059598022697653714253263262307421878807844510007388
    B = 26754516651984847827520021673686402469210260992588390589040845906066379710865
    n = 115792089210356248762697446949407573529821704869638731345595254574982026606892
    x = 31981048106161278378942998126907672430759875903803033983046454788762059104807
    y = 18725301320682050583838452133947719653568154978313507514980835819164587284968

  • 2020-12-12 05:03:10 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_GWkU7 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104726749092211751441459062858962529241881270194383132811917544384379506917663
    A = 84684120601300257657085140540405296144438945127222892081447429798309834728252
    B = 80015308894211788426211685100267718337013341501140894153936515536548397034056
    n = 104726749092211751441459062858962529242482206074029896874013675193593540132716
    x = 102634472953965857768913904860303402398177779619314121230775424631267180168194
    y = 7013733125306722282178711574756085873873328743562165533576841301474042604276

  • 2020-12-11 22:41:25 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_DIiGx uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58936833622543910176574706706602845905447618202056788186789782138412621812589
    B = 105337153463525176105258860904674368617186758467495304345212316918566533930051
    n = 115792089210356248762697446949407573530155685256989376010855809262466686804501
    x = 95406603126080325540757038251172238508041142200476499273808455473089411356212
    y = 56900337143409825635388155342914209919018655340292388630952371923902381645860

  • 2020-12-11 16:51:08 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_lsFwl uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89718227709583315084672695245875229524953952140207002428151185697609278999693
    A = 75377003535284781001399219846497570698767985079372196154658904606026293409988
    B = 19158243353325999681491384172846216707590828148610267594990806131141441652108
    n = 89718227709583315084672695245875229525080935210789215498917216749316372404341
    x = 76425200278106175651472848382502011371013423283126949120662203531520826302426
    y = 82505677211538348255671343693773504915636118934760894750811743725503287266824

  • 2020-12-11 10:41:19 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_44SVy uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 87951984603866116808750515632148779651163210290247800251781961459956360686695
    B = 102699083126888355969137332207574460577686878905196156520422376709884842585638
    n = 115792089210356248762697446949407573530472403741197594110695161646538102756068
    x = 86303259433101809580676724438800527651509572085699704601634897364241692934300
    y = 31351766325993692932696369695935281392457882112115395922213119977551641288458

  • 2020-12-11 04:43:14 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JAetl uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 13127593320006135879912528956601891007658112261888698787921389432304901082411
    A = 7434353521347305058247282545565674577779845116521845304670701970447413379203
    B = 12654822316532672285794530886244857603688332978258738825313866546440250426801
    n = 13127593320006135879912528956601891007540648611622596748293605931301718061916
    x = 7193929557858246547341690960805741583972397619719986192116276951460465015555
    y = 4884451654396690029330729739166984943481531797346308991945782484282479064150

  • 2020-12-10 22:45:26 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3SzHf uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82548404698677531906616573939637787932463609451828405435254502985027759497207
    B = 88843831323394428651032445041582169265587473507122222819063435951604282116057
    n = 115792089210356248762697446949407573529497589661465084607432259590442197708151
    x = 84102499419556149022486224351153449333251155016416720466881691536894941320318
    y = 88642414505456997048260731936833106310098049376199950743269062193514548559498

  • 2020-12-10 16:42:51 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_aMXzv uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 82813144721881704454835438897273242475631781385325973534946266029627286994783
    A = 40034381610715424904830504406453949598405993867426068311973536822071212281038
    B = 60267385939009957652200367002373267666227514808263087841964489328584422270639
    n = 82813144721881704454835438897273242475302283256781795436772983155188057682127
    x = 50771317539699563567675584216341688852121887888360981084993660359942195853655
    y = 54911450167281356808514093645643125421291350631262463621325328813179180410846

  • 2020-12-10 10:42:18 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Jns2a uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46784246233962283720244356961988162798318308001744494064547532116253971421726
    B = 13239415393823323807373718391587050295200145980940636027114181408017505938875
    n = 115792089210356248762697446949407573530140076122700095296030606690632467113316
    x = 76727981345190673324382328996513447402475111802870463385834127678975850948669
    y = 96042931216526695594301788731753646623364769131592739373951126928752293048770

  • 2020-12-10 04:49:12 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZQJJ7 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28479949050755541888031336464464326467076026545493578771133223019997495531871
    A = 3037429226797391558065597169699372603186989173154225136163000327078950034912
    B = 18696427814339862428826155561108857553915152818835559795985549011129792102829
    n = 28479949050755541888031336464464326467017903583589045324695781394265097201292
    x = 1116084800033842275497291936772525018034838648599560085015270348882189793183
    y = 2808951273750431342989192050150639529904659745221207130693979485704041875112

  • 2020-12-09 22:51:09 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0fuZV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30716269157755207043872870892833987505482804011055227749475097113428849473257
    B = 67002741062693314757830379810705504731290850551403401290134914284613166281528
    n = 115792089210356248762697446949407573529704460109326540343224746684142168631443
    x = 7710005398584072955343033068860702931790103226202449481799208003693535549989
    y = 52947012067341762752445194316679227811037699944217702179418801398325953878720

  • 2020-12-09 16:44:36 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_f3oRq uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 32360206126825843056853343956460461525027108909591096944350572803583761978269
    A = 5300074011757405268308806484997541383288188537719619903261190102119258447693
    B = 27835770894960972261612756325153095960723699164276470484027894303977609504062
    n = 32360206126825843056853343956460461524733639592801467201011744109330670196743
    x = 29975363324641196681137108990239992006317427966429204155518538964506757983818
    y = 31773323693256011146582329168108539821264052952725293327233057063646553174566

  • 2020-12-09 10:40:19 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IJpm6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53528231986605255918034363353651944448972086409345512122006868933143512068636
    B = 96453652735518770838856215309236416850481690349567275097413041669312462981738
    n = 115792089210356248762697446949407573530303674402760426669685187263551752120492
    x = 4200236206340961234473725719202473203523178256954356358965565750417435314720
    y = 101712192672874637091453392424365365469221020269925358002527674356796184395284

  • 2020-12-09 04:44:42 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gSiae uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66022115602061790855367014574937106522430413965843085049814385662476759524707
    A = 39887512285500767440991139685858420961772627836332071482351115674168948348008
    B = 65907792983388249245055829567534065952450468914832278989065931202753390381009
    n = 66022115602061790855367014574937106522614212570655745109396555054247338617148
    x = 3062786639099580287271518250963066363766122376564160888545289765412516327268
    y = 65218954120687011796700005987060263814994652390466409566271445893180829796850

  • 2020-12-08 22:46:56 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_JhNuq uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18285159977267693932129313586176018286768657639466504135983093696570569642279
    B = 4351016952461631435881829806044956391734923441034054119351180893903286647036
    n = 115792089210356248762697446949407573530163681104147898897213445486472134955761
    x = 36970850866542192341861569199802916061647666045826954731410290362081515523930
    y = 104442887103873947016683144477417413474006474393739765587701103936167850060634

  • 2020-12-08 16:44:50 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MbgTr uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 43428163305609307362757284056760990994913299522676129812341571822431709010971
    A = 11491817827522077370371092701556514536131417948634341258231483003850166967575
    B = 12009711116359485151937556898950806110989097710144994388791901543212995965047
    n = 43428163305609307362757284056760990995065579799191299540717498523457083466237
    x = 11702589865052836590165178066008701519495559406966610551124059753911970161809
    y = 5565992668235397581162776131587293902208612192369001061282237805219981825880

  • 2020-12-08 10:43:16 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_HoASO uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53499563391596688341476974113392886850766399639185474497016912581443126033906
    B = 27383481128887133169615890407608141765142153028318980857516185767137652642077
    n = 115792089210356248762697446949407573529780457388297556144474154920105043802292
    x = 78540522192691509162009734202974773716964005282643866273877313740592437349402
    y = 114008626418275480904125837356207458810821076026441999213552617235557949570500

  • 2020-12-08 04:40:50 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_AYsHq uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 74490722411058899168419942338949441034547690456378074559630561648857099198371
    A = 17774730472306293300894637098514392984224075234138820741647579349018939741879
    B = 6097518174850864782735009289213009860931607016392330924567844449337509493466
    n = 74490722411058899168419942338949441034455708299662669198874650179029913785116
    x = 5159174157413887322978832939263231007928068952778570462151267641097055398896
    y = 28072926225934574861266412792582989341763754101898594467324880020130880339956

  • 2020-12-07 22:43:34 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_sPdS4 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 214471158487289515315759892173083824443603909875023187179779811577203489478
    B = 104794206283488081196636309041851970595808857181190901937308514556575921610296
    n = 115792089210356248762697446949407573530332881413128962022699947723518008620553
    x = 2976473729625280974990813106879675284898594147698684685697973245613104223911
    y = 77188358654184755652317530340502310836110244108251428311219396776114258752858

  • 2020-12-07 16:43:54 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_MFyb8 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 59108934812412169205643126744659733430498778802033025476277906647562412048039
    A = 57394303081050717137170126060125237453178292148545327958918712215515770063248
    B = 44630781283959041025758587419170335365993192831333052409126045530250369943895
    n = 59108934812412169205643126744659733430694814787349994156161237961165726073691
    x = 16339467425100178380427641164041715900814808870338799039342916398465888676568
    y = 23189674761881334293763797281840465670966907665730660638421653907443987831422

  • 2020-07-08 23:41:52 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_XDkJ4 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45163121761204050078570998726885668867293362426685836453018654555012750264443
    A = 19702638565175060462035176108194743987583370838642295723137697635488984341253
    B = 42214309482687114953406389267776212246119079185997532758477377427493830917188
    n = 45163121761204050078570998726885668867425402221952123346697243794812034051481
    x = 4525208202920046293565472647827420651134492444286569135081795647548734646534
    y = 28112496855842224990267786198440296709732196257105558680495861538819922112372

  • 2020-07-08 17:41:03 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LYTSj uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 108154934225958540256658216377656332514923415815296297642627384531337045787431
    B = 87113254625748050845614182134208164324180282011440920284524457657578386487661
    n = 115792089210356248762697446949407573529771710023291935949379737846864822476756
    x = 54898714087118241386455349028362145883764670397371062766985727404185265092775
    y = 94582106328683864885021927380779831488452397657740308204245041018521949339540

  • 2020-07-08 11:40:31 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IYj4d uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 76221755822155278006816493070238835840821159846471194709491141307104708825447
    A = 37631900264939661510355987574285908182132446463040847168711237358352553937628
    B = 47697553371649919736041610742241172070222733376808451001663070249375765736380
    n = 76221755822155278006816493070238835840596459462861314624632103429623071159092
    x = 16156267146003781609303481182625874639459291404724494016624213443192871739312
    y = 546669810358678276213690428760985534360956466920511369053266675737368974944

  • 2020-07-08 05:43:48 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_9H2au uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81857415715579046041319668346933886422586396043372419261183904729138635257587
    B = 113467591758263715328095334573532961353461285774686790173510190353331225291127
    n = 115792089210356248762697446949407573530225478530409166380455343961792217648527
    x = 15021573582592338860251750558440990034231887231262042079288577512211264897653
    y = 8957345826389474252158689239802056647969375191685695878220592052891915139950

  • 2020-07-07 23:41:44 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dU4Yl uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1380899215180610647241038738357964869498594264351047524531261324269108446409
    A = 317479095146199331165049703198457373556803669054783471429532890843762906615
    B = 1143673234067290344334153699013857423748845857916535010684062546809592158672
    n = 1380899215180610647241038738357964869483757936148779718840017820012722463629
    x = 906977729123763598500967725160770560547863091978895603652997370269442253777
    y = 355059560883816505455524723106193304170467709192946422951260963183047051928

  • 2020-07-07 17:51:23 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_erBHr uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 99496420103126858424294684758880410349758648625254086724033835730368150361502
    B = 15386132282825122204111573611130152180435381503284679838183503489803628656156
    n = 115792089210356248762697446949407573530300960313147537417825007157917004922076
    x = 85192187847582950500085780419387232668930243812195049715198964767332841575414
    y = 23918199116590796532641958519018194275525816232118052565555847999083732245246

  • 2020-07-07 11:49:08 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KCSCh uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 70317904845634014010769353258458665307500423933240167841122891808703039492703
    A = 1637677788116535332321614641674715180861469760201270982012808598437024990552
    B = 44025978076210753808772976155217392383805286109912259889666125843494736619697
    n = 70317904845634014010769353258458665307051859617517774214472304452052254212612
    x = 53782664578422728701623885193728587672259025951576224816724831830602945076850
    y = 42583959129479011725643186909509718723673278552543682535963258062309666554264

  • 2020-07-07 05:41:14 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_VZo4d uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 50788629947924745187574763286117086564533770425727525133467359812877043229332
    B = 29776498162463234752025517982220054029040134061939139112942901962372380489631
    n = 115792089210356248762697446949407573529453948566903255134848788859795332623941
    x = 27768908593931720709511604835068151785686263322129008209039203827351327701837
    y = 104525134577290399222044120740409899834472643648709878672807477723302798732464

  • 2020-07-06 23:44:55 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_NSgg1 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35947361729105491041265249744903055749564106649485019282895466151032231198623
    A = 5050387672826729465674452507237346742922620707422165995061975113724041081660
    B = 22034390112628337269980774080828090669949154365633540686191108140579840942186
    n = 35947361729105491041265249744903055749482018299714389433642543018741805371291
    x = 22619424363830567756671875653216761550942154398453213349720212440324724346873
    y = 30115373850794859908109998216943978643395064737701978319104453739305612143072

  • 2020-07-06 17:52:33 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_arz5o uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 95806294115061449797454884436990091887443979243055725558370553638962766019744
    B = 90995860620831609775368392472692768872424235169538907746394028294606133842631
    n = 115792089210356248762697446949407573530044811318803214130240502231192769456812
    x = 23357591401625619688257442595258035309792449964780352626318236702842393987806
    y = 102586938780495294719738784167399115744492750806947686332643912160560606044856

  • 2020-07-06 11:41:27 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YwUkx uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 23244212988570090478683398940823160527025946466695427189259995200154622363483
    A = 9917112135450894554661436490143496600787503292463104047820714783975552831448
    B = 5246724131269102780089320248345114942442386962947171549796731105439500676827
    n = 23244212988570090478683398940823160526984377759729401051378224626622502878356
    x = 5964254399499573158110018333841673267239846762012258300919461983222567070689
    y = 1921339192531091556517440542051370346989759153450328151856965773017690532518

  • 2020-07-06 05:41:13 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fxQXt uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 10974377436178869187757107552762110151489064702365404389740298060616244943896
    B = 84099619264164383503007535657646423232375194372078656209409827176150401357576
    n = 115792089210356248762697446949407573529904458125876633970545706100047144017577
    x = 96512232848225389415885843023914751205533613491357900663349090981382518574336
    y = 21592298537596465141367274754552116875925215372186161455756110590553516386642

  • 2020-07-05 23:51:57 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_5U2BT uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 59480334628563604990405344093278658180735596128445872865085316575204821425273
    A = 49457252248774074925342735062496009168211326684739522409636295314668397851546
    B = 29168132319940259358247567338289442093577023836768969587975390526328774050280
    n = 59480334628563604990405344093278658180399243677441486275296787383427170772019
    x = 55367259306264804203209010131379774375160668813979589537800372738695630471169
    y = 53580556194526991088630848591748711481814448520673102397058922035661977380610

  • 2020-07-05 17:48:04 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_iwEt8 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29001939061646145747040548030747700191289876133651296428394386721077739908984
    B = 37014318658018814497020450502949739851399677077080049571586797265385593311079
    n = 115792089210356248762697446949407573529706845106849804895659280105863580915028
    x = 50947346992102742597410829670523280700274429560720503136323502715167856147713
    y = 23777229185434984097544968597909477367671890570317564089643442936081349836732

  • 2020-07-05 11:40:33 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kntfg uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31202700485928459755589442623685676940481958958192202297840025208321620861723
    A = 11023582144577152603752945848996055967169637382352398356288174004072934882838
    B = 11050144799365755510700503944020541035198510108382706382183640134032766659183
    n = 31202700485928459755589442623685676940319328351956451083014964024275639734684
    x = 29674370237677646491731642423835815294359051108499956942138913069753642378199
    y = 27187114471390082757930397634556722754245636960934749536256790995068521869850

  • 2020-07-05 05:41:21 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_q1eph uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7122246072134229284769618942403698446131405579236016210845609676757796836350
    B = 2243692116388439428625757664482563736064230938616793069339242409831684725349
    n = 115792089210356248762697446949407573530653905124428403466064936644567149011067
    x = 20484236443482221598005015288353154333779818297850304673753411543908688981635
    y = 23715780067971712089064287247797790447678519389104503402908710221738807998436

  • 2020-07-04 23:43:35 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6AV9I uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1510002517579561084311198775706698628970870566087106843986590824221751858313
    A = 8600491669277299102872065833635452079905288371021312428836992714646002985
    B = 1105441386168890695197871733876145553003060707442900901365585449674193071163
    n = 1510002517579561084311198775706698628969804121594374561713371994276827146279
    x = 922501448977301190474779693123720395070065652773493134832232251482246000147
    y = 506675138564417216117169350739775230830506884757300604866959765145793474744

  • 2020-07-04 17:39:51 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VSjGx uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 99621545710710405589621497256599291269072227491127768925177031590664792962251
    B = 30788733182540481309072873249627396041033206170051359350304431157328466608283
    n = 115792089210356248762697446949407573529848001713921828045979921935229698581956
    x = 25480738895766607412724591533766491495433506732907384979615806036182645503372
    y = 14087239590361009689244488544109379470452790167927712591072111004120398444690

  • 2020-07-04 11:49:01 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_m48x5 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 72460076009124680208365138115679036290017094902726444279832489624254157193327
    A = 68857552277835580867560420219505735466787344140020351578558107705120233963348
    B = 17541499738397782266542451437036958157175183945158202894143785097136377874578
    n = 72460076009124680208365138115679036290040097648669853665354765239820732798468
    x = 36419466845227878087320671354535645464080964189712268056679949870775911325558
    y = 70347465874151539306928535100057315991676574286645672351765828967990933575418

  • 2020-07-04 05:43:36 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_8vb4N uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 103239030605411695388658236046283663792040201574443938950735951844405083660693
    B = 18318227412333352014015280139417400975995754602544717036966066570641494503369
    n = 115792089210356248762697446949407573530474126761596666098095012223652418496377
    x = 13969454282434326169918651716006012720114903898038252177000868412347404960488
    y = 91685422795038545505641737511215549557088456479863998651801314371910150664174

  • 2020-07-03 23:40:32 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_kWsLa uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92378078373255346608514563794597818392205208538402824605665315300054892734113
    A = 25974973348741929085544085017264494459728715537826348941061062569706945283993
    B = 90676146964096030991303434763350685169287315496050391860655869417755531063416
    n = 92378078373255346608514563794597818392553535931150495756175310615903438600939
    x = 13780804965288087452741029873311324760355688943491507086756666928278663583485
    y = 64863531224559294457039933733896948310500901432557762655226223545770618480304

  • 2020-07-03 17:42:23 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZXRh7 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 92248688300160374200927399891476464402984472408938509699160945692064490931052
    B = 83573518016109517140853912567530114702376190184560275408472852988336809825455
    n = 115792089210356248762697446949407573529720873106215932000597701531315574629668
    x = 75591983436161409709234444436567160213859090346353304704319500143836563494569
    y = 49312892942572965196966767240749804706304828314736470277857823778276162842968

  • 2020-07-03 11:41:55 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vijIF uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 60590592197013143803804628337606089112633010933742485171037443725090407133047
    A = 44146615032440914358567254964876556021368934447915213801423999277019410464029
    B = 29334791112833814435044013814847927714610085258156743374212729189003225011263
    n = 60590592197013143803804628337606089112362972500759833094831709400362018899892
    x = 7589770781465196602832973024861379340516580845749402112165818773426016847860
    y = 39755561264479660457742975389882546628967888674956160263388424632432226828928

  • 2020-07-03 05:45:04 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_bMTmp uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 90453922572880776183745120640969861260352737844536361282380775714078873199974
    B = 32998793998590199530196896544456081194249406866468450998322191300122215322667
    n = 115792089210356248762697446949407573529827686109320210473812394596036228276247
    x = 88026904712015407917124778882646098817376940959361817602192143172878142822026
    y = 102264787980870636782501437970533463174762136048067757010480146911265516273706

  • 2020-07-02 23:39:56 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iS0OB uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24478227176670459048718245207774363682563978729805788087966324934925177774531
    A = 2233003125049175067920688779778378823530237794900665823658354365129206859089
    B = 23341115581437048359942142747043412118831480096892807544342827467768522205773
    n = 24478227176670459048718245207774363682331523119042010750729606186191521284851
    x = 16572970249048448026465249540993752546208343037453396142069350273124988701950
    y = 3960755447074534841488446574490959402331878855952136940072170662066264794534

  • 2020-07-02 17:00:41 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IYlBt uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113411516534190825957966027289348711215715278660732079319071988670666956994331
    B = 38002503665581478481440544686992972101588934918936793727123139445708158651520
    n = 115792089210356248762697446949407573529993017462506758811885526553552027338916
    x = 57966273969624778861373409346538666652939757583483559367300885939403463083510
    y = 6118596127889413160012344912449324714987395036355378993584638386012829623698

  • 2020-07-02 10:41:09 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xaJFg uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 857533984352911676797924441457471098666701888854596611452198444537612458147
    A = 159878851741024301392597357772609917552325230599923087087319377507247476602
    B = 758295031515184529668030609696742987639750314417092704093693112977166024495
    n = 857533984352911676797924441457471098693795429287964400459829441716682524132
    x = 781357476131810812503607212270237406220994521841866520249625014592772107980
    y = 238737992318782652947283717624650397984662621422783806643405120937213580350

  • 2020-07-02 04:41:06 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_mSuP5 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 115001071506264479629783888881432411076305511089810477648802626629321651037700
    B = 96516889664171114657182795980721684238757395247938101776364704225830884782889
    n = 115792089210356248762697446949407573530119049936040650938810324632700771954453
    x = 50918214507406257597114795602832341420215641079488935590258863085117151522758
    y = 54527055225283376065546127882713629373959480679264755324385108683037733584900

  • 2020-07-01 22:40:06 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_OgGX1 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 90776067815917968807001780070864829203780293985008790021769952957067685178297
    A = 67512674381954287735428748871596297991596396629967351636830416600307675486644
    B = 6169082930942682307205816256645114999507208815040830900734272917676225298838
    n = 90776067815917968807001780070864829203403623055983455352284932630020361361979
    x = 77751542675566403781770097799408818871835312603083935985835680729416227196973
    y = 528336952710224727867691723667232985654826826231918514661488738161958266456

  • 2020-07-01 16:45:43 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_iJGNb uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14020690815634368042003038668083264958723441980919572516001348677298878962407
    B = 9762332252575525144372975209741391145715220495509631295267284579952760472621
    n = 115792089210356248762697446949407573529762178955262065519415420548415037578012
    x = 107677803377703746126096241816976339465388686538559714162677089064894387124279
    y = 109251599189841497054809111685041898342014827743892716068010794999793263868472

  • 2020-07-01 10:42:16 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_T3zJz uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104541386450231544140273991635095589529237053444840312123680460133558812207591
    A = 78381246379227479963032782396038260183226807427508115696431381004146714558943
    B = 95221298857000649394398191658057507511200606080609180765686198404374921737069
    n = 104541386450231544140273991635095589529193607085344105519072755602000009179372
    x = 12824089654695332425414638767060799421166541456587706097007883199933832716066
    y = 41510603038232895341081768311261967785790735653362730521793290985286104908110

  • 2020-07-01 04:43:01 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_h9v0v uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5143141827372070088437708645442520883732384229550808900438028902548531496491
    B = 97838876404236548782099793141416931876102337864702457567078357837450895949679
    n = 115792089210356248762697446949407573529675028293560513258783025692751535340343
    x = 79005627755748853071942737077186995617792583006346057989852919295809254940165
    y = 62225134980636103022137115450120512534194830430642153917344539309653284249000

  • 2020-06-30 22:40:04 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_2ksjC uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 49450951516980660829898083382722518920079595051776174061091889102559652614723
    A = 21962488091117412994183708241268528306307718690261964751885781973428392676565
    B = 3093160414770995902798297073069855828094444795191791381553545330328684306246
    n = 49450951516980660829898083382722518920318192777025395229275437013167250476841
    x = 38860171708548380567573719001057306651321205064353202765130849442795622159964
    y = 42221974015375625568948467822566477958242346150743317602863480501199895575966

  • 2020-06-30 16:40:22 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_AqiBU uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31080301779840787912038713208518945748042844684208885352602337038197777496751
    B = 13671541394812112173949194294755379666882246102843746863518497156750939367515
    n = 115792089210356248762697446949407573529442997036209071823519683971451281829156
    x = 74694665489499747933846381846842187675885994960778520889598555661058729568487
    y = 8783248025957014901208123145759997979289979305978612849005981675440903775836

  • 2020-06-30 10:45:18 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IYKIC uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 75284855439624717191606622866110400060941105959641274446517650222134607670191
    A = 12660470882951355092089582543260537251091312483732349873921653646509253156994
    B = 50673760166667405905133070098942240830585146487529558353130196833861367092179
    n = 75284855439624717191606622866110400061409815791985678032726083400732359945972
    x = 56057413022860919303081878514711443166183048255057926891736242884492482988000
    y = 17434349391207972026684802807604566745720516311207493235624394064099340703118

  • 2020-06-30 04:45:37 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_4jkPA uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78396892736547806304114025075681805248100258235025542661549908102817467124900
    B = 114307343479802711785385510657570645098106784884921516161615951784333779397082
    n = 115792089210356248762697446949407573530457038063097547480983968132420957401117
    x = 80190869539117832484174190149035520031688851350473925508129331103267633802871
    y = 8992054540204046465446756134036569393363355050297070494285283486535610272712

  • 2020-06-29 22:42:46 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Ca16e uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 69982536101312279336577710062822819120127810325161897834604561733359507773129
    A = 18133079533461809428499588679548760875972383544735191983438328748944927376887
    B = 2357139570157953344362862263524187184050975791675655929987056544918021042490
    n = 69982536101312279336577710062822819119909752038310413539246424594886333855509
    x = 27808832418971039752662433154828743930865465546821401618797267972232544653088
    y = 53987809286536768262319826148508975199085941046488870539302395497254896533196

  • 2020-06-29 16:41:30 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZE4ZM uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 110682262658094300841344936251703047893127395144394944721824170004922285632746
    B = 96022363054027047225729178570151287716994616102410699432573132829991057225620
    n = 115792089210356248762697446949407573530207229427106087774336127780927482367892
    x = 12101941606496295443154022208835248478424704957717313573293504937560105366111
    y = 24995174373083909969810421594272126327389750362435394473247975853782039315790

  • 2020-06-29 10:40:09 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LSq1a uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4253202360095592215187052169661265779639943390588387720047425679994823195231
    A = 2014181651437832186320783176212387838608221031635165710853258630039264905825
    B = 3924782363393076276673543966505991894719525326974576155228371441792107317565
    n = 4253202360095592215187052169661265779517961254602274000788346963856488041332
    x = 2295836479647172746623833617725450547213599612870510689215226081934852714534
    y = 3199200810649034604370852237954568772445627586853199750964503643998457930550

  • 2020-06-29 04:42:11 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_OBNCy uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 11721072551030547204477939133783041693642461899838772448108904365682478753422
    B = 75407767570564361072197822203615431702720049356810694885008235386900772816379
    n = 115792089210356248762697446949407573530415490482389193029866787582335653265201
    x = 50335589694399021865865646563271367365669254217701160385898685715541436518591
    y = 53422463879899200678309877884363132384928702509157779063942239311048114279232

  • 2020-06-28 22:45:46 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Lq7iU uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81223478730216239772969411400422837109095344856829116241356974894750555184083
    A = 23595444666707924861853216101775899420001039122612049877745956657436730576340
    B = 42260711303801667810935056226927845219639782967285065166624688701935266797828
    n = 81223478730216239772969411400422837109220625143814956472557375543034278810639
    x = 67509748747889352183697090867541730374072991728381989662261032196217596844
    y = 26932244250256159670503694829364777032530089207979593067778009266296795147664

  • 2020-06-28 16:40:47 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UwPQO uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113892574473738308949940869835660842043152839172198767861591322329250438101133
    B = 18072533755214909923429649627471700850293329263626454640647451337822554505218
    n = 115792089210356248762697446949407573529962455878474184214861303839321835338956
    x = 77285384542979700798491922275595041390643987139755142809305166347050752209231
    y = 22174595538574798086423933199680031603048488332240340992538026903636612447800

  • 2020-06-28 10:44:18 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_OzA0K uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91868503192884437091335534728681911666465066588589349334240934950700134944087
    A = 18178988700627363774667238964979060334909570942041407343866021290494788154122
    B = 78726220376350253976248961195145812533561569828135756109523051154795413791977
    n = 91868503192884437091335534728681911666311405591377422163532776038367783512052
    x = 682179944440240229334333289421499396089648572745530418982308992139112430475
    y = 43409147166962641504977878422315806316016062206702312092964872711864624943000

  • 2020-06-28 04:40:07 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MNy0g uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52094123899820341836503069618219019139180266841838169379297396168592578506394
    B = 8705940389320411725250292788826436630637717127049106754601955533436477769600
    n = 115792089210356248762697446949407573530232429905198730355181504446346759582401
    x = 56414447082929583398883229231500564392792832240800819788959845285427240820586
    y = 4185636782985034206379367224505992026001899623388393837744885462163322460310

  • 2020-06-27 22:43:21 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_sXUuO uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77836476439683348792298347176389590692564566608654564397657035884686129304987
    A = 57465015952604150337717485798782227169079823648002522149008835107704937251259
    B = 63308751232402505081616741493788302470580560514806366679123651942898799036697
    n = 77836476439683348792298347176389590692224201285106901372877317285620363720879
    x = 46796917107811492512229965910422319071183403770747954771909254877413153858453
    y = 71919645558522329626918799181073384770662109971432397749585566683822148246008

  • 2020-06-27 16:42:00 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gVNtP uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97218316855793192225756997916625580338204718560504203018725510368467646622458
    B = 17358671947823639885363175149115659157032695931390705242345795279245849728322
    n = 115792089210356248762697446949407573530275634671897952951377444287961383413476
    x = 60815844092138454889065019013872062097946665839053258565731976090503775402338
    y = 69812347505440615330118751268732927878111167194612916504807472654790564795620

  • 2020-06-27 10:42:34 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_BAnib uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81140032875699481566477968090398811566275873195397135364287323704997542037391
    A = 66219849170635134157749126510432193437251914539190247049681533545699089709209
    B = 61472842171416268215489006649549111363134090828015934358579395610829234225282
    n = 81140032875699481566477968090398811566357830758028315579260921197088773467716
    x = 50930357703635707046139052547105123631715719655887310513090408977875156700730
    y = 62460711149819059688211585880599305537703856029600780799560629933311284340562

  • 2020-06-27 04:53:41 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_wAV71 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55372848881186691367389133125132776526422624453343090821951013112877636585331
    B = 82175907957677697470435129467434426297575455899063421349819808204282599686739
    n = 115792089210356248762697446949407573530103586744876437668029259075932894464787
    x = 54174805641536079543572415713618862905049281164946668112455163578176024988570
    y = 81607569624901484023779318269880440204402612569528832120877735722282955183258

  • 2020-06-26 22:49:27 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_bKEmG uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 62735901642723157815648741687188191607660464502491868468512032676578913781473
    A = 57514701907084720304407507396885284678877804354841396926572918010123753013889
    B = 62049578991876485652728999987841874690686741718276358965520097834169727307070
    n = 62735901642723157815648741687188191607221301725458210615516595401643368397091
    x = 11626014159374985726203513313916224075712753857169753173964005410572225328694
    y = 44984130955841777025800702520677618896331755496990798254998235423314088464768

  • 2020-06-26 16:41:29 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KSpD1 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 68742151344345927624377620373367252220276985915818482632207643763382028627344
    B = 78045389106690794990814898108185572639026006671907264996855975850435825752548
    n = 115792089210356248762697446949407573530596371516386792333062230913101927991276
    x = 47418958758117367664158782403911756150512813193374852754114309342290686328491
    y = 77889240159653631875224385204161177273565176906758111431078469780382747357386

  • 2020-06-26 10:42:45 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_6RwXs uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28172698435221659202726060930703809820457601462462305772680168227899358575331
    A = 901507560360200150087300600389663378389914052858750111124663742663751436453
    B = 1033598202338801366568060405887585196559454702326125961733737790403782163594
    n = 28172698435221659202726060930703809820363041902828631359309559320905926542012
    x = 9030751808554041107339777704829877243143305037313694813298860102207302852477
    y = 9046733793591976956016413021726176165439589773323368847433802276488494124828

  • 2020-06-26 04:45:41 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_GtadB uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 34918965236709220695368967210348976367372147507839160260341606724174244283061
    B = 40669123686455675419251009015596880077850072459163000268514497674340641730325
    n = 115792089210356248762697446949407573529668939476143711196663944018255255896283
    x = 24331864526527646745869939002182745606227267980691214787396077504545796778723
    y = 63279065823135013721334390954224356327360360743235058290514288976835314821970

  • 2020-06-25 22:45:05 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_TvEH0 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93582386633039791110055799041067700759417854899543449187465592513002044032773
    A = 13771690299352238239717637537384859888699355099187250237418494559765412633242
    B = 39401376223315505794459962171800401802427145864337222998451194178874081250616
    n = 93582386633039791110055799041067700759691548508644582950205389660228520606257
    x = 16316117901511341173210927057427367528857852130611108920689670606408602991959
    y = 57128355851072845896238596755235087364499457995891819097454598530290010202562

  • 2020-06-25 16:41:29 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_pvfiW uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42563406259241056965994368363257124854772426798529717846701959869131204978866
    B = 2652500486858715016792016104820603182315280946091514584303870000555349048513
    n = 115792089210356248762697446949407573530522878053630746058647149875268600743076
    x = 23606657130156603910358323228453669161214919673082166805950041067685375001290
    y = 82854677776648326671898522888009518315835987294148791431576575370737403536136

  • 2020-06-25 10:39:59 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VAt3Q uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36591339535425534360563220563586793126635975328183002870956698583524049070467
    A = 20124210687699823515674461024476435582220236161558784272439684163977978808694
    B = 6102659889741414055984853055220209025457154652886369356125706991928643572075
    n = 36591339535425534360563220563586793126703137510571555407506314686279974698132
    x = 35581748247345098771830447888213357931571210074422344297805665802095470002800
    y = 3864410036838634972885228331630792509574166642702150425164965583994073072910

  • 2020-06-25 04:40:28 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Q6Ihg uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 48683902328575875078457820727007365432273577332846250328929708827568275809575
    B = 115390337351618457589170827495057228570500684062796723799484175911582064191595
    n = 115792089210356248762697446949407573530286454234208852230956289627400037801973
    x = 65099948724608821721100846683261260253564558527738600398754677220039243877271
    y = 71962747376352744556417589518268027408153547808254871624944232411804963198102

  • 2020-06-24 22:40:05 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_m5QOk uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 19193690467732340534314091754296276807305870876888117983491640645640188891493
    A = 18312209326405543157447812257877625375806103563525311592111142009525384624724
    B = 592498477981325128342693387927658328459587304486542834061125284300822983888
    n = 19193690467732340534314091754296276807200320931488661152928442696101082149319
    x = 2336436436349160741316520529630210707417527786865139514397112953374281375560
    y = 6621803404207615490771328324463862778472775922967621749634195746801795494694

  • 2020-06-24 16:44:41 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_p6Jmg uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78523065283306746530465646717937979814513118769474516060914455144168560217185
    B = 46451937014457053470888981375701901914358351125817213030176795606666107561725
    n = 115792089210356248762697446949407573530051440677999152240423433607412377035556
    x = 92203901178656967464905650601722516369872873740112497404500626139490769544594
    y = 50577366566583380509572480491707048670377577908076655911934115617942690487780

  • 2020-06-24 10:42:24 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gVixg uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 42526521103283929946167906460287087968189862688733172706291659007225022579067
    A = 15282851586105181482805108579265133885127770912171840540893497364955821895422
    B = 3237185002585187392613227333275442780204561444486869228781056520334509766139
    n = 42526521103283929946167906460287087968189156813123250168576780487409081898652
    x = 20334322148082461613653225516859789464138093406196218757162891073487560266329
    y = 8319164717711208021863189934690229413994672391523288378825731248348407060106

  • 2020-06-24 04:46:40 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_tqptb uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 23082690089640197833713851462156490958646270927986788969697383568055687101024
    B = 13563485184726882985196581677684106253422864468604492207352923511002518492959
    n = 115792089210356248762697446949407573530277709958354820409920952483457489253367
    x = 35043808610525531493466673727678363831131485997675662023993680179136284585840
    y = 90033744245298932980885217343355001824904156753913409751249386186185377354680

  • 2020-06-23 22:40:54 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_eHpoP uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 65025990833864696918292603682664329691794904650771837465276352304833067003163
    A = 61657989998585347656165920387190239618914760507848675539129078456935150125831
    B = 61593261943880193671703500510402543478682424892693581337995640316532583591732
    n = 65025990833864696918292603682664329691294897795425837426549971479645944701107
    x = 39841656587089944511661158389718621292305467722302510576479907632986074283558
    y = 29486636977087081063182355222162080296520901179691698356343439799431353613262

  • 2020-06-23 16:45:03 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2cazk uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 49099143769458662766434379232194473745200762422211708367842281177178419901056
    B = 40579323939163484261133119029512508296741582048269410307498333042033363700783
    n = 115792089210356248762697446949407573530293107481087258827322156398550493102908
    x = 54761925341996736286237879367163335381045340166681535135902986238063012028182
    y = 38306702519952218699427527376720806886651244690250182017780180561650452936320

  • 2020-06-23 10:40:57 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9cNMt uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31039256077628595815714612194031329468435790167000608765248584650741392597263
    A = 18381194084125000244850996144655250874017765034935010877060128793146866861834
    B = 15528311670108246586609906847101066828868706458906178204452278159376805095692
    n = 31039256077628595815714612194031329468674646029075179443833529369253871336932
    x = 10739354376431779898620590923773046012753367465318668859642700507794295014506
    y = 21784499866483200528370581456923615546638006241493655184225510628116553098874

  • 2020-06-23 04:44:13 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_uf3u0 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 115162828088087465173328642135320489449156556199412660962646797576161288920979
    B = 115748745749416971953934565438379278384291217830782295769219590893012608763717
    n = 115792089210356248762697446949407573530437721464439403020600452727725921368343
    x = 27420559106346095858088574643141788319252490537310999476194061432590981062223
    y = 69609809290887114326280013855042351391442578826713617788493774610117167573902

  • 2020-06-22 22:39:49 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1GX9X uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 111170668915898469805302329922600381767535324763069635892206824355501986718077
    A = 100666435191567440886453142080765218740972121881177836492135598051505871878492
    B = 41744421986467247254021129263920437582510689877574936649380087836351587180385
    n = 111170668915898469805302329922600381767077339670979643438139740657995559744753
    x = 94797364224117840255327516919999741527518595653461729922976840567005468159570
    y = 57509177546321069572874314637261071179072697039457220441379673915682855248672

  • 2020-06-22 16:47:46 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ELA2E uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82881949878658516260531746018061355484158752652528281218082292536330598931920
    B = 39855425495652993165600664202822640027834208574153492318210303945389132035131
    n = 115792089210356248762697446949407573529552066273076843381371767120873291088732
    x = 58534759169852408258806116498427685739750464178957811215366477154631640964208
    y = 46884783661641009497441419607276012762762886664671708408460519849644745968808

  • 2020-06-22 10:42:53 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sdx5T uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 69402007582271346144264042686236888654678296065175255437991151801462745035727
    A = 21148000181937105669264879111980035086218077890911236984230903492169671578461
    B = 23823879137787349726846658906878371541050325288879585634277161134462904876951
    n = 69402007582271346144264042686236888654723800624563227489308214726937239782548
    x = 61347402777331566658792479326775184862161263422746394519435144199681448117106
    y = 13950574538788520054992353399728335174699905941015193904018704695178748023532

  • 2020-06-22 04:41:19 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_RO6WB uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 24819565535199561244934638414052074972770304980197099845916778217154300911190
    B = 109002752965064409196729972220727449300582685451301421369182545767686017681545
    n = 115792089210356248762697446949407573530344341772244945872121006338558244943553
    x = 53599739066073399981895362706811528107131387048249292157866545844934783565142
    y = 115448725860339786319431553708785241205061286410199315600032119801221342465206

  • 2020-06-21 22:40:37 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_DWjkO uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8566822064116934913100744591772843254715724807943401742188920222837711152787
    A = 3332425350844816532911362280288130719318664880816314190695557007954838666184
    B = 720490172241063840477253394253774639664691605298592963446697519288871349198
    n = 8566822064116934913100744591772843254706285223290176837998305407585695453857
    x = 4663582821032812173582901569620236474662097027913908861157597025674837665221
    y = 427768991607821717398450773307457323933606621804176728893826567964910031980

  • 2020-06-21 16:43:12 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ro7Nx uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53442138325893001299706362308810483339947433676511475805372990161806187193915
    B = 99744061830523862002597049563303650782110071242540346922873810101171527579896
    n = 115792089210356248762697446949407573529855932581206719294418459853296004819236
    x = 51453582173919261371321518238493207324880523260276178791395402343612086319535
    y = 61741946292696424278070162428322616638748035475743144513214400350949074015632

  • 2020-06-21 10:42:28 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_S5Btv uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103094198133400942533109404995929353793886714887330437767841400485936306383827
    A = 83910274940904685078446768779026204492134110025740703691442585454649218218955
    B = 41740294534889199861714552211111857231121491560663987411510152107765798934433
    n = 103094198133400942533109404995929353793969827404599461577351153955271637867532
    x = 14609317144302046434601077261318384679531920141164184274607117271735969921110
    y = 51670106226243431492694654748884436904660342869399847181415561879896524210984

  • 2020-06-21 04:40:21 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Ehjjg uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 45480307454350709542328152924715559816000941901519847203448222185685893443294
    B = 110483152212946016556566990989655180356322942850530557671568858755855347039491
    n = 115792089210356248762697446949407573529975692974204153444313307023330846907513
    x = 16274641123538252041684754459452754248176317288058385662103787869509840847323
    y = 86954612794935518787360016619923094655931233246009074473065896207206744140018

  • 2020-06-20 22:52:45 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_wFpWt uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6532196114078708627894435941047208814008355829182473609059490916035847769139
    A = 5980838083617641339929523706748469051651916950205117106664762792385830936765
    B = 3657397891838406249228413303134899245897018767031557321081468693413439061136
    n = 6532196114078708627894435941047208814026445806939855796421225877124817988841
    x = 3205194242918542814862492067520512610039517546198325072423796150086135504629
    y = 4209852406577039903408956944815628264994275461664145352143697701507442050300

  • 2020-06-20 16:40:26 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hiOCb uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 41341787561070858685952105564461110607000822293410548724095791610253055692811
    B = 27166010626888320593916966773322414140125337367262753981407856680971080264000
    n = 115792089210356248762697446949407573530662390703606439912787534883010435970612
    x = 49341338986089162438206152507246431156410136545923807547805786966091622668688
    y = 43556712179098998687076320876513128180853620886461319773534521775650371312062

  • 2020-06-20 10:45:06 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_rNBQa uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 46615989785391058216629549277356612915901589644746372908958283900010278415327
    A = 32831872017008150160895333066970658943106309668509894664390393681764531811315
    B = 3401924138907347171684069182936048482588192320013015665947676263566381380597
    n = 46615989785391058216629549277356612916119976148562891033932866708195247511908
    x = 7517613307380408800281034255149157659947095737510977042756902694334602815126
    y = 41474097979915208329564041408538729018152491354610850802344527715141958447390

  • 2020-06-20 04:44:02 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_pGlKC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 12920297254805053942706949301788431322213028065137490476172749619555344660916
    B = 48292625481365816310403558650159938891509219262801028980656290945637827328579
    n = 115792089210356248762697446949407573530349138849441054272396382703506900497911
    x = 53425448487568379679281187020256501222586511492136773350811140217699086489791
    y = 42585549101285502967279240079926761298763268588389482863718704394344559676460

  • 2020-06-19 22:45:13 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_pk1c5 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4321155848794632490676835641287905585146682523952310168396306502691458213781
    A = 2607861529703928619266175658902727662866433563026160683690688781359375781385
    B = 3708496135180948407688515453262763745837220935308313949654078674512737682958
    n = 4321155848794632490676835641287905585062124946068345326691994316540639437057
    x = 3034051187771906458839930442225819248214387093418790958838646079965428471410
    y = 2581301921373318277873004458431200010236438133150963158382290348099111336502

  • 2020-06-19 16:47:56 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sGaxJ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105471259844844084306851605433803082853351994254886600202134323144059491151404
    B = 96413044640674357422988666180877296755111627891180918907538769476125024049643
    n = 115792089210356248762697446949407573529481755419959656286535898125433453222708
    x = 12863143574295425135931254390646697501260002681478551671338607526266931812401
    y = 99812939427789156038395001789506285233885015515600622710534439121662886957782

  • 2020-06-19 10:41:51 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_v423U uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48900619264015040614997913017022243974402078039465231843485251967149856057367
    A = 18470100340147176559967390581040801440869725363293276290449761931640693919147
    B = 44956583851939085343764069219289074738804276162920531044717069990666731398947
    n = 48900619264015040614997913017022243974784750734338340589758677627461083360812
    x = 7055031043327052452165878159818486703562634549779234320341544157081179786368
    y = 15903684045039927947890075123160300083221359007926013368103324045465198937688

  • 2020-06-19 04:42:31 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0fgtn uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88113552168619524405760603627142798713883996026337107118617621634322009022625
    B = 112487289001369047647986557782981148694264918072532702042568916071635625424128
    n = 115792089210356248762697446949407573529979145915267500148964181038252863082357
    x = 98194035369944867955479810103748949622344806863965235886612640993121055301111
    y = 7321424740470098516671368975767854085541905567103135541649304487305331479850

  • 2020-06-18 22:44:20 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_zu35Z uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106240196798873562983927257732268397912349795151882068808007730922018949260147
    A = 49638394217545636410748400584855125739759315845630010109816585555183743172383
    B = 53616119258835263636303608687648720818184521021968747379378449443818301759944
    n = 106240196798873562983927257732268397912603150906180852147375722195909755612747
    x = 38735686623647961434080483803911524869450515773224990580874305759987479963548
    y = 10978972307694909762466504772721320485547753626575878265516721133801991467008

  • 2020-06-18 16:40:13 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_FVRDB uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3292106806534005036734304675469454725576528141804846353396331876011008517645
    B = 51062005853475609421892498776591749059530538881169889775712022302552825242867
    n = 115792089210356248762697446949407573529609463443147220756607816213564619462276
    x = 27555546077479672538840688593562426168183708686515500557897469848966767181988
    y = 40435395362498644355211706438763244518909225930700084086267674031637998143782

  • 2020-06-18 10:50:21 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_dowCa uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92915912351314890328405737290807338362591751814859879362833983685889374126127
    A = 66821009197705677006099258011312933252269899641144412266206664627790092344074
    B = 45858308346818645744973682157019938828217533161382519254906452410651963157626
    n = 92915912351314890328405737290807338362680383208504638568252377053713786428988
    x = 16679126920813336106944094580316896088063261088469477287821396464338179077530
    y = 12479306254103085284360166855813975868211567469910868654121877821355516345180

  • 2020-06-18 04:42:19 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_EbNTA uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 67693453051805409177277921527192300982426868432437993806683993370105169338363
    B = 38121774106045481450471808534607849077992321762783839123783355987920077154819
    n = 115792089210356248762697446949407573530048954474481999995902369065923148037141
    x = 62405824034996273999034442892879096302841997188866481082270675517031873310652
    y = 8888150995960302639705502689399897602168967364381324075053051779987702810530

  • 2020-06-17 22:41:12 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_rS1MJ uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 75196640301856708889567755515231974052321772383355068930765693782771053366567
    A = 51656381198049366505328473372143087571820119254124653274329960633211105371467
    B = 62944062847675357416219949831997157874358962212888411744367040772201261259481
    n = 75196640301856708889567755515231974052630082809046897613596120111236617972213
    x = 57731980191754743193031763852356749008987458906643961828318322626540900571906
    y = 65806836825085349780287594031497971899382774623303373098980401269927198077482

  • 2020-06-17 16:46:47 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9sIlM uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30399238335818459555945165776847634046425940930003187554192248409704626845354
    B = 93147123746012650944759160764132951084591684919485754003901784465599281087150
    n = 115792089210356248762697446949407573529755946282573832501515354344475737679588
    x = 34433333859986909092016701981004812353913567902091407541876075283427377958050
    y = 58144805027853280001723600694263502877002002391750616628613223400101945620498

  • 2020-06-17 10:40:24 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_BLRP1 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 53725598790851185281091648876177030212271667963126817919894109615396086028419
    A = 38632414013858359537928687694131385604835124274542012722675964713261956163306
    B = 4433985301414853153503167998662645748550956415516619511241904828396666865241
    n = 53725598790851185281091648876177030212193428320581861334277833977454487493052
    x = 30757874540760930012419374278518335645597078879077103007331050679762425755306
    y = 17899511806868949756206600001806964965380387648393284291980246901743542060540

  • 2020-06-17 04:44:23 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_9EZ5w uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7624719513682693527780914017237889484538137802561646370105908473356959360576
    B = 71987276749857995791791741472207223346905394703437905997323617475705240180830
    n = 115792089210356248762697446949407573530273009427942138261078567509290211197501
    x = 7408821651219335950357492688978153959294642360593698944862503539041978530094
    y = 28732163396848472588949128102009685130384645866343812262182564221284676526046

  • 2020-06-16 22:47:17 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_jrhwv uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 11035801665394223871365194854527047536666619406329332982964811594507944903449
    A = 7832606647624614838824103656534946868809563324098911308263334649034812933709
    B = 6927911691616217198001067384947267902544852317421957141830415427916933931904
    n = 11035801665394223871365194854527047536751922620531790817264432672499504226639
    x = 3841325662143494570415884982994204079974337356766303368556433208141851135554
    y = 6373574977458295284667413085448362957431866523960461031966591642993106666190

  • 2020-06-16 16:41:02 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YzMBB uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 91208316939977754739596244125571161631337141766330070011596892983159578348209
    B = 59562649128249173781293212609446388644716699762922431503856641686667439682963
    n = 115792089210356248762697446949407573529523639816771412094958129480016525381172
    x = 71103341199752592442000578934430548920721414477405700347623143649165984481410
    y = 39908186408772974039460359737010397338322515526475390764038596217977074862466

  • 2020-06-16 10:42:43 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VkelG uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 105619453178798265092678050282011396246793482042165656478057671161223614060547
    A = 1799390921142989369096591374815675971409307165617094809493870742901576225825
    B = 83127332443344546942139759646661627364422505905468372737342469462817463806766
    n = 105619453178798265092678050282011396246369460311980908424306143879218427354132
    x = 103358073099142954653680066483436108795744420093064370371406516134766462335985
    y = 13827750312113718853381679971377887950205891030153397341602616963762465652452

  • 2020-06-16 04:41:44 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_wlJ4q uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53559774859004650764873343885993583430973272084593507626205019392706859855097
    B = 108299894067612429869140243318366865817584327908115825557888927158315774272994
    n = 115792089210356248762697446949407573529815318239531198574345777010105903674703
    x = 41474059446323256444177344956804483734228046888461560160043312873824094077361
    y = 15696272203057488408701806889551944641237069100808464567617682675824652187958

  • 2020-06-15 22:45:43 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_b4OD3 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4119495200248403795227959358316811073251977173229940153191762164328202569177
    A = 1712761612631396330069287795062466207754642412254266497508496376212082435981
    B = 3886428200631640086053724966423793701341563325909008279882665804214947107665
    n = 4119495200248403795227959358316811073167959574243490659065533430784558187933
    x = 4100724094871619847331866349789055284339812263337094380563895647917206819690
    y = 3291254791664896780142269303697630316603330679857726698855689188624460629420

  • 2020-06-15 16:44:43 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZvKVS uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 45909735841295413360041783604532622768535220033619752013516972636638798620877
    B = 77666595823372656133758100924051163169722636192000602239101531552753655994256
    n = 115792089210356248762697446949407573530109757895599860649349424675959835068548
    x = 31298220527927264761082771053679375821639804406833040648126259916625673717404
    y = 101691938405757961178227815754632411788802813828126210883004546892982463966008

  • 2020-06-15 10:40:07 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_d8e4u uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 58066428673534360761234488522810571856530734852120780386562391230664585288607
    A = 32103370728407150834802712262579842672893061244207131738379048498871660024139
    B = 44064836518776497721294657919473883531798561845821897503216426375897494181333
    n = 58066428673534360761234488522810571856211315196229139000054008565128326767228
    x = 26731625448628335912826099467057623988637339575569856924897789332214404527647
    y = 43409618456904080996916518450130900668751032272206031461293056271523435364738

  • 2020-06-15 04:43:05 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_LmYIU uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 71520449121076803354425743559917351142327032442504673774463890183999901460157
    B = 72297847376095061175530278155711892294515059451349040900079659033706937509805
    n = 115792089210356248762697446949407573529573047242209492108027158342969180760021
    x = 12068594098536366060724389482710789049860134543912495600123948907614333123034
    y = 53341623493002267145878526607271218104905347310524311294989161053048659444712

  • 2020-06-14 22:42:23 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_3CUL8 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 37309136137286968698980000076747016461378649954251593365877130367726962308897
    A = 2754583534493312924520399165073440760029993953275772686801359685303767587240
    B = 7318145802933220097127164576019656601631418118328528907052433519921467232186
    n = 37309136137286968698980000076747016461273624505778326372095710596989034315583
    x = 20732728453122075469497656137635791759723801879257682168587152900083577196961
    y = 23928310277175062783039664930299992875004539820339928704793474909097330707898

  • 2020-06-14 16:45:18 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_npKk6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 90978091404946148996258917521594244795742101907135660378173736276227741130260
    B = 53539972273679866113545830878592142712969601371080236883096145706776292453917
    n = 115792089210356248762697446949407573529920425892859775843896288529808403152052
    x = 15746174415770284159320019292988364698697873083424327047808058122953458133584
    y = 41890850426355707052030753617944474555075651451797006831778569148458087741286

  • 2020-06-14 10:40:51 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EAvka uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84165212465279007577567298091821114302449647241163186080180462086735185192343
    A = 46441942860137902258884155232953563738510084001307726088083466044084212883272
    B = 73885680058304377250472543080199056724828493939278688081532399860528224044995
    n = 84165212465279007577567298091821114302764597592568879797295917415519996044804
    x = 80783735725624953651222093517529714603876708993062964920198787669900421564063
    y = 13400855907603155878841281396023616614300224138094095921417489918617460738248

  • 2020-06-14 04:40:10 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_9Og7R uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 27326172368422635241089353889505265649757204844742477999745104659208745518617
    B = 22338844885383461351472599198189688105548756169552152109402353589599944474448
    n = 115792089210356248762697446949407573529492313148180542319170463381879416375983
    x = 44831726740733198709275587813737846976419271039060845212806615048750247755399
    y = 91017727669376313246078944872136106215111560199065331577992342049284446503366

  • 2020-06-13 22:41:57 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ZxQFi uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 43269457613485142484018872189063595679920151473917536670971026782039020990813
    A = 28443016036430119687378918636038813645326318283656259825904648192128230569482
    B = 25046793344858889379193539483804685837153915748882606225352982260067255292631
    n = 43269457613485142484018872189063595680275101750461495570041289250061102255421
    x = 6939162595432742459561477649247741858644515550100970468758179445851859478222
    y = 41787504982966481357781360833907697795200841842906550684353501217702778290924

  • 2020-06-13 16:41:46 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LJVNJ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 34786940878295097149992944563374308142049989619998686543327265360807370153042
    B = 512120015476974023226581226441885263962068079134388927761194731740514562507
    n = 115792089210356248762697446949407573529915345347361576794672709290734750190892
    x = 76295008089621248429127298527656442716155044254194181745340215445102081245890
    y = 36683142718687173497682599731902900142173459845204526998464243260888738107016

  • 2020-06-13 10:40:50 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_QGtlk uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35771000571711078872895083029602923018061519136793248727653506680440987576699
    A = 26494642921942769548299825325609562820070405746843637506391740176703094057665
    B = 26050809376753041700104284742531642563547396756164532456379528969801841068979
    n = 35771000571711078872895083029602923017887207914727494643125940941199467098508
    x = 22418223646643470969837323250898582386908589644369876042842798159954407656509
    y = 16705703087770793484511905963514434007208086701493720017665155640794942988774

  • 2020-06-13 04:43:37 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_cnDc6 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 1998073535501853022073356632449768710818125940808477250636665541380096299091
    B = 32973991345588966766474146392600183996548105025672970846030700256159742443890
    n = 115792089210356248762697446949407573530635168821022085154340384236997420126207
    x = 87228853350054638608863533801707374770173882563940099419052492252283615231432
    y = 5995087199885450496182033878127115028473514731638967178251664801863708270496

  • 2020-06-12 22:42:59 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_KykZ7 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89435409103121778862493136490968840608154396415854932423357241114354379313309
    A = 65079526647660744078105688136262286773856283575122954604489027320680931208576
    B = 54331151784634946101639823721763032878430123937988436947844304294280051730215
    n = 89435409103121778862493136490968840607780672994142919998413326858080590951599
    x = 45482191147098064862042639299287916412150268502688670592470647820525239556611
    y = 65580383552428551381958031338352871885430735253165205317679145402287257655780

  • 2020-06-12 16:41:47 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_dvcK5 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105472120696591422772733431004881213113186338330557499079955211732952915600174
    B = 47919742660745696954477740224968967160998927965360290817429509269623879844320
    n = 115792089210356248762697446949407573530518564897230964400963797278241714061812
    x = 78658500231071444787374182454557433567667405980016046770824923321011022501535
    y = 110972005162331163518741179574360021411533027182244205225739406541024935533816

  • 2020-06-12 10:40:44 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wt1wT uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 61775914230179146040051218688825926451671032225697632996414064769693625049399
    A = 20777363063639218744721688310808148267462195986813702780956376879716948926175
    B = 55750657240856472626684829693610359492873962523813332876600396482020793178491
    n = 61775914230179146040051218688825926452041551431657618557437534381540601592764
    x = 19965646626397433284391185628258631033389661236581999394935350332335668669531
    y = 56705308556106778734685590727974424701226858946388786977253151599506497974548

  • 2020-06-12 04:41:48 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_wr5vA uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 100133594280925160094842688169932379332784448520693056434481091559076149069821
    B = 55024322723020909359094297340313810071756045681583997208953567655517465189426
    n = 115792089210356248762697446949407573529661611266735240683320164648645252162187
    x = 2676851913603560591850256271126860616446795152803586843332547142822252626804
    y = 103559893878621073332505046116735921117181669396721141450632840623312251887036

  • 2020-06-11 22:42:38 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Z7B35 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 58101218382356936748775631603918026634763357601681051989072289910135941164139
    A = 24484357728568030451477205878886500310159357761861299042795417215946318973961
    B = 909831054469115912126907090145057090974123493621708227143645555086854125872
    n = 58101218382356936748775631603918026634794040451709615534872871871057607448349
    x = 39009667425458837689207670146632536148694744193259522633229093941786133959524
    y = 1824436369791601104396760678347596622472557767071670858641714444151800009968

  • 2020-06-11 16:46:05 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_rwMnj uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 44323247908947196239817069744145585682429856153544859690974311000521880750526
    B = 11341714713885531026790036143497870281580542399774427468931630535850593283756
    n = 115792089210356248762697446949407573529509615504854356641418488226906531673212
    x = 114293128869973319460886931091151369625524653737878922821230629057615489969979
    y = 74507236663982502093266461862746598351887996434182140708823313964523906652212

  • 2020-06-11 10:45:02 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_piLx3 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86764134636187512509618682905118532828751441770405980914552006172655071804427
    A = 35458058637956686389944392025869394860628949261599824080003089068191173422451
    B = 42277707576492636832700546646688228054338855974933974464956764796603070606276
    n = 86764134636187512509618682905118532828874989878549298291964164236980183590244
    x = 61138910157917274688868587791418939480504740696202229135202463723237291429203
    y = 68913094665363009590055277545900234666289453590560897656312960075111177213712

  • 2020-06-11 04:49:55 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_4uewH uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 91659722180186167816360227343446207660738593451497666654986225590214800087232
    B = 33878240753051367880627045890531914215877755278480239853610851313405212401553
    n = 115792089210356248762697446949407573529884551764403547086492484923283425734171
    x = 87822833642816140169869427886765473129671676949786654880863234914482790922629
    y = 32467869321388440328390249872763269141560344477195643548073845832327425960536

  • 2020-06-10 22:39:48 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_WelsP uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 111389709045961016066752408337549095207073142474644108915734224827787228682361
    A = 98551386800597339092281116065593385317919015435799925764193434730978042475541
    B = 61158658124742581997508007375359960806186922361547962334511086756501138538188
    n = 111389709045961016066752408337549095206875403042068928078642167654038144660777
    x = 63165302759013979799360377195611937443947130598303315836349312018132689293256
    y = 95706215832736695926840047995693039356551238649100896989006146503753470046750

  • 2020-06-10 16:42:37 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_fI4gT uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78584129943113150713684540381045560842566339071672921768954090352614543598254
    B = 67627370631244549648214322108563542068308253967489647120692622774698656874326
    n = 115792089210356248762697446949407573530048166243551114600451751103625857030596
    x = 45702950482315096228085484160045954736358058556215178959152715583271096510595
    y = 43795362567641010355062757833116130582986147997091369841252705299059750284024

  • 2020-06-10 10:41:04 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_pFEFS uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35743425263624122522180976717631900943878884951745281641086135052443196129283
    A = 8799978370260812311924067213119682745917869843154251949239457587056575970410
    B = 29720946611160971148230447327166680451722312835640982458212906562158245743653
    n = 35743425263624122522180976717631900944194165351847243663306204753116486197572
    x = 29626960598573734577409815354807437260218604619123373079736971774872317188118
    y = 27439192468651310200462860870046577647356363036591281066694872487004942238126

  • 2020-06-10 04:42:03 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Kod8m uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 27934538352154898836618158127548433133794985121416068259778113954808036837904
    B = 49548312523667979408780260412387386057689162283598095001451469958996531614996
    n = 115792089210356248762697446949407573529819980663934172470491625097210159529661
    x = 40633052686546735732889241454289904208258769805612647894060188235641572574021
    y = 72111735843413254648615051530072936299191138088009966099728221588206859366634

  • 2020-06-09 22:40:02 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_xN18J uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 112261993166879914337745465407561112997695707355669520856085441563288883698369
    A = 94470819460105361392352080702670441984261208779502045500129861510584225261709
    B = 68355282644699663559639261237780098330696474970061706636083185348039766470821
    n = 112261993166879914337745465407561112998005521908291202594650902051453047199973
    x = 53738398221553719360470059415488478923659425387615493930659009608769295243953
    y = 56551359870317545017437748335978241048702577808164548962941911548491597404604

  • 2020-06-09 16:42:44 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_SRnMT uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 62376695992494835401875623013922146906126042904697737083654883166188379880827
    B = 84078335912370939902562848387192841879091978352183435457840477663380742707329
    n = 115792089210356248762697446949407573529682515218354434410508412593767188149932
    x = 103428930677356372451094302322151036817029611225752540189825682962903360428389
    y = 704814143930687487989363600220983288491687063488033106473536442481750694480

  • 2020-06-09 10:44:17 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MCzTD uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 52343192801350113592650880103077160561762467837389544202989410076105889053171
    A = 30889125648067315166223624164661490560142814952685697721309603705084464887241
    B = 48069978423141485957914353817342857499525785306334048872185170222875810324005
    n = 52343192801350113592650880103077160561467171836361646126606547810322580805236
    x = 36208086585160581665632887606507974551510504073116071318083307309355557017380
    y = 50571781062398358185664306662788889946469699627314020643685116137206366694764

  • 2020-06-09 04:39:54 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_4S8KV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51610425087857994492073912794757715106780959915687501150654761070090789207527
    B = 69670177151331977171862343960458764165196209178308079419461463414053949370791
    n = 115792089210356248762697446949407573530522360338001512954496489339215336712311
    x = 75656734686503441851541040161216221958903514222686390030786615706403131076091
    y = 35773888257330175424103118465577485530853710503696938000549111372905609626054

  • 2020-06-08 22:44:26 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_bbNIZ uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 73350812556754818739870167148032813855402306473925959921965762162762500071509
    A = 19153684946935529311127116195173746203640502657188689925986473557263013826014
    B = 27935908568097787093136826855017951667661201337478573930243180324890989013737
    n = 73350812556754818739870167148032813855396778332492105859972388238831167193203
    x = 54887864778816214887743794951417765281545671736727073899311536350311768462001
    y = 58934841980809207898239445827748076954389827381615285388538443061326581137882

  • 2020-06-08 16:44:54 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_BHwX5 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 35471390727872233996484227436081759279442240071979632961548362776053632262902
    B = 11579587383919820349130640927901105125301809961003926656802528851989433214551
    n = 115792089210356248762697446949407573530381770419903259752216734712573335326732
    x = 46812850995520475143633619108056253814732729559850417655345179880542383043965
    y = 103369879395484080411299845659598840602365420250369413027150877674621321614864

  • 2020-06-08 10:40:49 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_T760y uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36674674617471153782168483932712973575549085136876854740084071177984291521883
    A = 19712262607408029340066864531664760791569928509413432426719817099949890248398
    B = 27694766990086688287856251048071204122295879038879073932694948743931816900921
    n = 36674674617471153782168483932712973575774835698840829397679253413863719606692
    x = 31898647016517137561984595532847377156835247029129441254895126355340919124942
    y = 7655186066984399912887743931839449226892106231841276667039553500069403788458

  • 2020-06-08 04:46:46 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_PiSGY uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 107263952931184196181675418090249753413737463114671993355291425678861555022061
    B = 15230347743477292557286158039873895265738910583978456197684602745407732279495
    n = 115792089210356248762697446949407573529842769377903865713027333948575704635277
    x = 43827485942703493538064738085971061879911548331972346780138008775895994919885
    y = 95120556533833897093366215950930249589153066888390682372088676600738793613488

  • 2020-06-07 22:42:49 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_DdNoA uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63098594254568547965038677903356229552872044365979903013588550706483003458097
    A = 35379581041260892398389562103969406224612192435413431570868369399133206085964
    B = 1538677051024819714032830836969024955220080624637167135552125371719177432626
    n = 63098594254568547965038677903356229552641652940995414919504315319484993270899
    x = 12530134892685331361886039074751446654672838058452408324162114132926220660554
    y = 1802226272409086999071714815259844829327294805345902608252852668928757224988

  • 2020-06-07 16:44:40 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sE11t uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77833083504646707927625793420375803602385933514322579187384211931454836539773
    B = 20764840942371617643081490431913330006264193963207948537436200951317393993438
    n = 115792089210356248762697446949407573529794710329536865965790056165106760707612
    x = 78088676380231573243185121066015317209631807645715004197464856793797057216090
    y = 81090688479589646523140881232142441400529953761580436347223012013787985641276

  • 2020-06-07 10:40:07 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0Q0wl uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 60320091834156112006616359124156764736807877450968475539138864068410575741879
    A = 27217643141759359411592564245893084569974790343917533577765432804919280867304
    B = 351119765479174838898167281310687161285352834656477498110324580382890678350
    n = 60320091834156112006616359124156764736430169496685668414260542717509482086908
    x = 39570344311929776824015693811037803711421768288987689127812314603360689240977
    y = 38781967270603462252298295624038776214953417114635647905601765321205742348656

  • 2020-06-07 04:40:30 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oMXKw uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 98198738013008222640560592411806335722286825516172548238252029423287725402449
    B = 26204749108281639842341861877669734990328914651345084817019044559775223000816
    n = 115792089210356248762697446949407573530119111020200753380130489997067379421727
    x = 105970481052490317591180483759776180858467071393609152812504957139321934133913
    y = 96407733388382159474746202296451978508940049888627662561307401418196986910488

  • 2020-06-06 22:41:37 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_rkTdF uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 32129584295858815033507307340816201096908373934701077772969640602836139012761
    A = 10642496640519245419470353565498919374300666168608337590495502247285515279777
    B = 26986784022042591542763716380939912952408822291339834220837119715328348034444
    n = 32129584295858815033507307340816201096798621238243858624149396760155225738613
    x = 32114146271869873328840487113161449964451831750692050795169716627751980044818
    y = 6451673657698865188902016074547193372895981757484076849167837636757712759168

  • 2020-06-06 16:40:23 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5SBZo uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 35811075005161330322060891550212477612077114078875016096598914752328984999803
    B = 90532861653932114635106754663803579399007543705204818009692770441936498434660
    n = 115792089210356248762697446949407573529596507304901157064803920012103912492196
    x = 93201053205164983783038065417771327065154797049344000390079035438634003000315
    y = 64082507458575590237322410654943377768576730276106222541831251280208261980134

  • 2020-06-06 10:39:59 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_pcn51 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 98338395324220295687223419113229396388643501829800044185247785011967893702763
    A = 3227646955610765370655672708301259298108248413518843449449405789175574987558
    B = 92057980356933255676919522512727281032080067212161864433627831270112842988113
    n = 98338395324220295687223419113229396388620414823708103616152790261888096707756
    x = 62887969516607207983674110007554744391358097880536856954642025703127127240977
    y = 29040754963174874206712197887702687631799598714180923941664052483643224581804

  • 2020-06-06 04:56:34 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_UZ183 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83379031769383222442558484879217234491666331043633519319463577706498375041738
    B = 40335028248613376629642004672608818411361526694714608035973009535301092870656
    n = 115792089210356248762697446949407573530645544847272977211445813027105658549737
    x = 114906531743255575659683773866659083299625391145330244872847801845514111431205
    y = 34461341054139953183499671078508654982675810652931360964836480254846176815240

  • 2020-06-05 22:42:19 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_WUgDS uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 3288084079420118794710698914967205384651824361999709718788837662255514438651
    A = 2884151996205351320002196791438372989129222275574791701391172774571186013705
    B = 2424158933533705067812702439731305253398826064691277933334506303368064616858
    n = 3288084079420118794710698914967205384667634197553724515170062033875148684413
    x = 3137438289497588853506795539771605417129856752387289316876633093554535443539
    y = 1601282401727245877161908554771093627880402166086028653647439359076002665818

  • 2020-06-05 16:50:20 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_S74jW uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 24185430150443406381040653090576811311823821007374707313549735288463731920844
    B = 98911377025726850247976335735927812954535934214903116904964353709855711581958
    n = 115792089210356248762697446949407573529844018620225700868755958344316177909436
    x = 24694843496425052994335044663761272766263776256426547473502279906360942684746
    y = 114083731778601267336035672564719845555011121616676967057574731612122086021146

  • 2020-06-05 10:43:19 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_zZvRw uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77356082823046253853034473421897183247884852395033970553086374495026654307143
    A = 49781313155577429068918425366167194744386141978886266811159326228059208736115
    B = 48467009784145724111604597145255026533371615973220678021163570531408143374990
    n = 77356082823046253853034473421897183247493118291392057850914490779223616938772
    x = 14499896816468083922723552230286515411095243027250554096637404392355098157556
    y = 20272714414231689430943662550626202757174200243128006164572289180481299432484

  • 2020-06-05 04:43:30 CEST nist prime, random a, prime order