Archived curves

Find below the archives of all the previously computed elliptic curves for the security level of 128 bits.

  • 2022-02-08 12:41:30 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IMDIh uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85000667500251092042196374823577608974524847488406989144192734038278004396620
    B = 11205804851831964444523421636317038905205657130470264585416271567588002063369
    n = 115792089210356248762697446949407573530150230860744995723845679565436046334028
    x = 91810076661592551544412594650379291557192706901617556240270442795452265214837
    y = 112838084031260132220208611581744973431722858886197939305457847362206334175774

  • 2022-02-08 06:44:25 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2KTof uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 98336412593844932856297815764020117087126701005654384568337887196640425875099
    A = 90672261110204550212952418129859782943395615114126644797635485437210117046618
    B = 28882267419268121117412408402402543254179331257972828156384927415786722823986
    n = 98336412593844932856297815764020117087220025581233402955617188427584511052588
    x = 79297544212377767607196953730390656340167768529390595847517131963636081972798
    y = 85651577324801696657306829195549605590723473617222842946751196668415530356276

  • 2022-02-08 00:41:27 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_woRFR uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61412188352929235256910816199519862387121948046517329568846273255460348558516
    B = 28107045419249805555504610787445178239034897335753817802744286666427104527321
    n = 115792089210356248762697446949407573529885227532525657320971268246286224178993
    x = 6971332367033228458956260075717823535352806525218932299313871788725509286189
    y = 103644515826690124705958415618170179684222765384334909669992238513699426098694

  • 2022-02-07 18:40:39 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_essPq uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48474254580102595619349401458507763123635243747453297703214107962682348632747
    A = 3299188592554815870280510785008550222349127023592674590102887774050321313647
    B = 17436512195164999356492344383466888651315369845262656436394608286503903215885
    n = 48474254580102595619349401458507763123486316561552980138339421743658199122689
    x = 7820209911176765174948715357681166935983921366650052758345393278148442059498
    y = 35140641892937799487348302903022425781289047767696527224970672843022568249346

  • 2022-02-07 12:40:46 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JEy9Z uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77558647970281656362184871581630122172997485772039125858359929618886381421212
    B = 22730679988018371044512496141037362569614091450355821224958986023220630864791
    n = 115792089210356248762697446949407573530104669684573901172697612554456754578412
    x = 8605132420687721250010004471648888628814192681395058873701749265596242606305
    y = 107270455795308647294772745558812751126282679550091716414920682281595837814734

  • 2022-02-07 06:39:44 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1pEI6 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 13574085007387782025756401869547251370494439387674070757666740916293925388503
    A = 13229881559303621039383218760281922521220073209042607432642901633345164260005
    B = 10724835188907543003125023270806834406275458389434578297312122130649278592788
    n = 13574085007387782025756401869547251370346199336300526157982051843417769574604
    x = 7642430846803188611855286983975415125330977718227356151734123342826287167396
    y = 10105051902021753096385721762098848929105654975754794393906234953284636639286

  • 2022-02-07 00:45:13 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0fO3e uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20974647661795043703475518289450113414726198829963925989453882158843851329665
    B = 58921021482676695541829326367697716048786072851144505555271079074384178992387
    n = 115792089210356248762697446949407573530288133335405045808194883508729480827757
    x = 62471425668304340552453440801408401680470950161229380059270565881307013552830
    y = 63643444712014249697615402474502251470734793475549434390339363132418918202244

  • 2022-02-06 18:45:22 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_FvRPG uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86471975729051707996365773909652205767794735818102549011791115137471973497221
    A = 72744330094728541765938079866845315582024210603971018202487379672986022427195
    B = 78046116009531481311093036528643102802231114510399252428460988955277661260802
    n = 86471975729051707996365773909652205767390971310166368725210049816512551431383
    x = 15962316062879916891164764771195905732824359288427832184543287029620076570515
    y = 20182208779585038943201579296105344078440800896735397157447190351252728245906

  • 2022-02-06 12:41:38 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MkJcO uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51912933185105379537782754565903067049408092102712219764392745473153697083262
    B = 48116145672563742864403746725800283752779175705851798813300484100828109862196
    n = 115792089210356248762697446949407573530282803937000517870131275590100013671636
    x = 45233570995014906727501564865987700260241963644545826848248981051890378416531
    y = 11684281249736267498429190373759214534812698660127512188515420762635330983416

  • 2022-02-06 06:40:05 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_g0sto uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8649809680390088429835534914192316754156616650841986227753377543711395266503
    A = 4734229160104866487667988643433904994946665059442710017991995725620171951331
    B = 3215194603656210168053643101733412365395723220513999484247929989051668298709
    n = 8649809680390088429835534914192316754137038263154674332622639300276310064836
    x = 4450508944501687800612966027086551860993286190317750719216216934012689917690
    y = 924340398217079954593310905525361208687182588682304602646718083176047872856

  • 2022-02-06 00:40:56 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_brVL1 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81574836562629919208527793813489788852548708911108141781894259086690964782931
    B = 111080569412175829249664196205324826959026929985772316782544947397684265326212
    n = 115792089210356248762697446949407573530526797691424581156443702043741892279873
    x = 98226494099670585467778062451895778291845918314925277147325785564793109124312
    y = 95349512032249887500765126592064353297876391624203019252655435004829740964806

  • 2022-02-05 18:40:39 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_xNPTF uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54151829386203429587033206415854824730285184445584942118105509013698259904447
    A = 50374431225262178839578665736543863855163939623772416645536910120649106256478
    B = 6254291098477012146144004370788164523248828889325179107627563988083221070382
    n = 54151829386203429587033206415854824730000101283640192513807482635607422268043
    x = 44820165238050191203600784785920966825833050675643107827842287698290579588426
    y = 42718783639644792038032672686284621134664307651805705282783855887744843924254

  • 2022-02-05 12:43:09 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ILMNL uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81186225086003147211334685388481203352159299549551839793665847342349843283082
    B = 87527904970665764398710409231337713375318934427415314916789626329401401936405
    n = 115792089210356248762697446949407573530323427126385955798108058725684226245396
    x = 32395958503815298168637672924114222578913136947191535242517939699848732788833
    y = 90287051067804774117170193863634000677394086506797025714165245306065973070822

  • 2022-02-05 06:43:09 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Uo6wx uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 7640441818740894677460149120023337216626594482778770228651439521754883334007
    A = 5657513821077205264892377723898770830398704283116803980174469211260139729090
    B = 1370252215221553592809314585290800653528300552465711623628471235822958597282
    n = 7640441818740894677460149120023337216704493230314672708682658448259309544348
    x = 2139664072074850242176737365951956658031339581904839090598575764509794257181
    y = 5851382425952748987223718620869042682013029705836386514841872076554143146886

  • 2022-02-05 00:45:42 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_RBcrE uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88012625841127224953885013560553908242843410676266096075620575079427752319675
    B = 6840575072380552825683073377329988925167410374025154954723086954620603685461
    n = 115792089210356248762697446949407573530276678460302766848177136136903807873807
    x = 105096880193887034186914981521219683662173351611453384715666973832826523006989
    y = 35616556531198119144803024908120814246390598058589354374370703210938122214388

  • 2022-02-04 18:49:14 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_4Hzqn uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54615998363169884286968829568189028104099728788656167127680923365526055220211
    A = 1279483960498522263487228754159881358495906990975669463232218161637111115751
    B = 38842616151739983889234953726504056489851033639709253777417072805586167129030
    n = 54615998363169884286968829568189028104129283634455186676632902395717433919281
    x = 46472743146175472726072038505951551185658796211060875183370975000816524759249
    y = 1574918582490783656802918999292544328014953982457064686619981526144013656420

  • 2022-02-04 12:40:23 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lhu0y uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 73322852738484702374670291282953472604382712826634524183638263978112978632530
    B = 104767093511603016772175559260349205646000925382207309174642689261129971632879
    n = 115792089210356248762697446949407573529500352025654614805358948028035788142412
    x = 10023554064223530833063150039239066099613703158847371303472545123975127154425
    y = 102874542445649485980378408397880230878667286364345126910153496562004207784836

  • 2022-02-04 06:40:30 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_o7HO8 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67623216073674302868892612950829412062932448792796475460171142719356467954627
    A = 36594675586399344432933222779458677834298086283455585790331362802616480056833
    B = 57871145449337114841024718869284297324547315994809691886700791352554788236321
    n = 67623216073674302868892612950829412063397419128078121051533416244519687694468
    x = 64376723536520066347334126011614488938892061908607788242188846601056715329518
    y = 51917922100806506931886636057257397410886351595391130329990605588854132407670

  • 2022-02-04 00:45:42 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_gzWVU uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59276738894171335461489700516162762481376891680003256861827005941613821465472
    B = 43748949490198045487188443419639179389548723050496668644745264177574009995385
    n = 115792089210356248762697446949407573530261606556605866960754467847330734791751
    x = 30646927090777047955666844128996002594870532547476410099049332814211970928294
    y = 25594702235732619985437198854122051293624413534900164070996486179430896113850

  • 2022-02-03 18:40:16 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_OgUAI uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 61088664146368603796576758184888081328574885959141367705065942319242002096629
    A = 825962019882729734565555994141956119965072725805791869030877409730682812291
    B = 41691412239578859203579130584208570330752523450997660717135988088574779457929
    n = 61088664146368603796576758184888081328268624059478942228297730109265575253157
    x = 31513765691583883598173479223504319594494194026837549101786834614885255676862
    y = 52824858971196291262147099920956406404664720881852841283549004852132823166038

  • 2022-02-03 12:45:48 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0lbNg uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 57511740287894440426252841214427217826050656750728731732220043800669697245543
    B = 34388026397705335353451517849254106526341730499090986452343079318174520923066
    n = 115792089210356248762697446949407573530097033448198644148944656979644575297852
    x = 13004522899227309716873076171022693223284365255729365248539085035647503566830
    y = 13017871503915627249244565862178399946791968875170560445419055295133826736026

  • 2022-02-03 06:41:49 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_fhA43 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40445651011673311292951550313251442238145083138569219937153164252221845218091
    A = 29652564810060272705784267523042786163964087057789755470730220394521783169730
    B = 32155055638393198161530388369500255316071742623215767257663736818899595995970
    n = 40445651011673311292951550313251442238219700420145271632995414139147728265388
    x = 23613210213203164294017318192771993064531331190758395657626777058202904870760
    y = 37967181393292846922161081867103065456431896398137821275644241161187684145510

  • 2022-02-03 00:42:58 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_EshAN uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 93159737541646085479919540681095148243082600372034663991937177555837492592075
    B = 56083436308513115534486641355670581706652697093952424697818824012716636851605
    n = 115792089210356248762697446949407573530443881446763374780164792103705254642543
    x = 55275387331848379993192182800779169362314168657214778751729553149725462966018
    y = 28484344175998809270243778745510771595615466055682393933391863134852743804084

  • 2022-02-02 18:58:30 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Or9sz uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 13014742286726462655931006779029060432817729045311000553374848322560172891009
    A = 2683618967580297616608712221348964548692584420484922634945946183880836124390
    B = 6878976249532011010604818641176630483558777196333756145672549756903932812250
    n = 13014742286726462655931006779029060432637890558853268881737551756771961474023
    x = 579165272172880242727927999728974773827706653216173500577029473104571324934
    y = 9185925446587396432126532016251462032796570536999663373499815696630101949732

  • 2022-02-02 12:46:58 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YfFSH uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 50677753624489686386551901731092873812894545044099713445746547055458508681336
    B = 39460366037177411200632605995413857303858529360561198448439672025180745023199
    n = 115792089210356248762697446949407573529704017536751162195608459236194885132308
    x = 94520026034819229859023602173897029566558269335503660422411636913625947777155
    y = 105215811698888484160302403089988360159064203405465954096011074530872370875482

  • 2022-02-02 06:44:35 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Gl3e0 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80322312381006297477925616776014444655052703464405742081203974567982398033111
    A = 70456977617772033844060450075774253700658507835848131794052336650214420231372
    B = 38108455994543217130286793575632082626179810552688574077515745552415866431868
    n = 80322312381006297477925616776014444655535866953641628618098097636155576981756
    x = 27810343368730473999842148038169647372074196021344745081827913292238250008775
    y = 28935553450329314951154566185209948261386980369792009365859844033445922490924

  • 2022-02-02 00:42:20 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_HqnYE uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47429875889045510878839849836351667641055764511374642851840912721901570251850
    B = 31694091604272875808876340399609806998402501388349534051980759720753667876816
    n = 115792089210356248762697446949407573530556651403862733958422298180770786474007
    x = 11110037847747707183308984044138274668306285648234477152435900630925119285610
    y = 20913010785267601811248772830259089607473075520311535594340695563840012874556

  • 2022-02-01 18:41:35 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_qW343 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 65278221567169989194358610863602120594876078031873534769297164978265916925767
    A = 25185246682711206237818803785574394535334874465674413525205620700666231338942
    B = 639049163164280228989864591458459962633967572966318303144247713656298484480
    n = 65278221567169989194358610863602120594510328229688219158310838700917116674637
    x = 46739054940555336216884127285653172079711941615402396729358878155152422447048
    y = 59849910351637778821488718388830925922238121263791597018239220538302888317564

  • 2022-02-01 12:41:13 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RvNdp uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81063728472587297488256505904054329247778574006536784779046605127740387110026
    B = 69346964723385829111821855866549241761597256759205494955558987234881006318231
    n = 115792089210356248762697446949407573529994549535250997763496581686992133683492
    x = 33170209995593871200859450840478895564240388893254787642572109250096403137075
    y = 1028570064985301476420612501499464125251151021082993254104576550978789558032

  • 2022-02-01 06:44:17 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vmOAv uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8578749421068300594726440407857441770590404816347946106915461174701286903647
    A = 3998181815262597741971398389385155777727677438069215494868184649507691253039
    B = 814759730709936707012431024416531838523346922627485678081369446904533892451
    n = 8578749421068300594726440407857441770628747913285417196790750819221775514108
    x = 3993098968120683567593331877872280928733557149504450038156410473275318705430
    y = 1306899182339448674560217579498025745741586764145746965954008166181882982650

  • 2022-02-01 00:43:56 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_eWRlk uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 60457413638746605661586178433197396198774211259496392760817531669613377016067
    B = 26565498083884628540955868521872504317957513308283040540689988806336643616131
    n = 115792089210356248762697446949407573530431491465350248051689347676239402438437
    x = 63205120536342151691240854021253219408072189100972921146544081115788928670323
    y = 97768524145430094055312741833396313691554200010397674034364348507816635386268

  • 2022-01-31 18:45:45 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_2mpLv uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 98718271397134255177221255723123414740502358603788485561947650101068976787037
    A = 98483672676915389976082630827412921171000874960596602391479283682345580936456
    B = 60924627370548970144666344256349272037571842080434424117447136236877237663202
    n = 98718271397134255177221255723123414740061050953045925824657340660843560185647
    x = 18643318870445836103010733908472981602017441107042558921002567319769212914544
    y = 3452596445709430908240085711771985063316932121545411247782621289388063447608

  • 2022-01-31 12:39:58 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_8Vjyr uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 66155692590809413711109241081835209590214355923242884847861302554706342808671
    B = 41559901185631309094212138031657657388756529540040418398994412569472494029940
    n = 115792089210356248762697446949407573530294670019653228396962445274679073346468
    x = 87525166726493622264117072702643638072568543414887503711013406860248686002355
    y = 7809743523392430180184622395046471128375457264430077708533400382904994349786

  • 2022-01-31 06:50:28 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DhHXx uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 95509747167877843321042550455820269961718675722135729415421535362161525904331
    A = 61504238904135458785088238748598951288821509664185005818203979239828536312984
    B = 32998236509737073605728164481343483932433318104861973370125362446785871941907
    n = 95509747167877843321042550455820269962258373232088969983672403583305338307212
    x = 21941137182242545248287874594603855499700932606834093620635225845294918214643
    y = 69012828184033612576153935478899259824557182165720543705923284726484656582250

  • 2022-01-31 00:41:30 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_esqP4 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8324710268141405187194136887220317636764396451695219505022688861934376633776
    B = 7869069049150797220838769833277684794630854426461604143409938676236851293599
    n = 115792089210356248762697446949407573530404059731167478900780268481037583945931
    x = 83998336519023637882660939976047585316946728008231716499701220696084512561082
    y = 66106775376205789763315559444311381130405927968657217861407601764344454229796

  • 2022-01-30 18:41:32 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_KntvD uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 99713862842337946350310555982015514396407698620775022753442618630480319012847
    A = 82369750134845230452811777516809192131767371022221276820666382971234317894518
    B = 94234613048882335534902609740702614445322029138673292207021570253502625957920
    n = 99713862842337946350310555982015514395991514737217598785427611039122388823869
    x = 91648648569933406173177127366663236194649773381651910031638586616120014309745
    y = 48401363306006287951163345430708944266516001678409564353404792101980065129376

  • 2022-01-30 12:43:30 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hjdE2 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42402664758074889684547270912359064995843602250893501662847969737058943104488
    B = 84259345220592546519967054249455338366525948732107250956687536059012646842266
    n = 115792089210356248762697446949407573529902705250971484609009781402267640769708
    x = 71572900397305752615071261190823631499657161439076385559082202800549019869302
    y = 94117240916591732369187849870810249633444419467175555721037339113081239368268

  • 2022-01-30 06:39:46 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_l8ZQs uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 57278073625431911459551272209621312509203430316989319076498209736661649805379
    A = 31261077945006028617378636915678352030956328749915559117679428212786931938838
    B = 33668184093369362155314441097858142655709862480869539666601539092125368987909
    n = 57278073625431911459551272209621312509593992819066353952750622131615099930852
    x = 55012966821300297954577358888321340089407289225332840573737009329218936227641
    y = 35260474564453914685853140251496810553227342277422555343418397819659996906434

  • 2022-01-30 00:45:10 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_2LQQh uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82337929121391879197444960230131373462177572061280268817322725069338827713827
    B = 107291379412730566661868472980251598543777878937639076296927527892106591435347
    n = 115792089210356248762697446949407573529585589954930528267093557080218527808143
    x = 115356927926062292005848481666401432307605652434703915886775035570631908897164
    y = 111685045881686615534225975430397983214891781330459663094825396198016195916500

  • 2022-01-29 18:48:04 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_RWodq uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6775209181070550967513722932038907524117483458669150836447886208023197689541
    A = 454199351637677063818456303456200675881797197961579360538267496342379191993
    B = 2074879375267774389414035177708391049065653791672641288727035692336455506303
    n = 6775209181070550967513722932038907524108295056200623816835199884187418346637
    x = 816356883963139054264217057296810051902473727698852156345751114874676108055
    y = 1277256455710513173973603216017492084376299595327567005629178169576416639774

  • 2022-01-03 16:42:48 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_c3oKa uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 33452955448581954032162885381185532476316902671532527150504671325492673748287
    A = 30946211281166115393906917775231046663444859869408891214177674423738094875579
    B = 24092718925025361325159142063438837335778053596041633010046836492108657695080
    n = 33452955448581954032162885381185532476160919305276073149185535125294131692924
    x = 20569601737666202734085837062484142777214354356774883581363913885946335821487
    y = 18259795824252799433216693520338516609739457073938123157613569972789587846846

  • 2022-01-03 10:42:43 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_DkKik uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78371440286164473682380826939132166555535817428500660086042032920686933419602
    B = 87272470395183804823211452802714396446342374486190903312039844607375844361545
    n = 115792089210356248762697446949407573529881334830101327601572052337027400369533
    x = 10686498755261300198069964537288888209706791669134355711699726286863364093829
    y = 55790754756137403188292964586584228459451163274001391885464284334455581366436

  • 2022-01-03 04:48:39 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_laP5I uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45518795017725140857640020068964526381052959440875383790196912194117538310959
    A = 35874602854531070446185255156025536818468814847342810951575323932419765235050
    B = 42847915251145031999850055584340927553380732243107955230703610038720165380703
    n = 45518795017725140857640020068964526381327786116019871183447805187127222291569
    x = 587015576153033294367867689270978608708384380270329796331505604561071249643
    y = 9298281076218664557672120802719991881847257258768545933389695049123234784890

  • 2022-01-02 22:40:45 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IL4i7 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 17500251581578450370498739052417890217773680810224708598887392401986583255478
    B = 31107768049076123239203288420890441379950393056658307196906220582201610817322
    n = 115792089210356248762697446949407573530335159471242894838929800740484674230292
    x = 10193396428663003528498224179531538702474499239129945060742948562710319626930
    y = 75166690560945889875975541824284976817722946724126810400179314583166341880424

  • 2022-01-02 16:55:05 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_8jHbi uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86170280828168477058619740597201493155984448235331353331693833968157528110343
    A = 6096959598963623701049316130383608497264045796588361522480081020798325560076
    B = 10923641187800249895250316931460297168764891876830154058787846666804054385255
    n = 86170280828168477058619740597201493155727205404004946964547530787392821247676
    x = 1048320683574413192308097152993737644718407815278032864257686777424071771846
    y = 24491375420527671611742761484581909902781432442848826465532987183120791715202

  • 2022-01-02 10:42:48 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_dprge uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 91599941596533913989720948874725995459608624242875385455032149543067611736503
    B = 89109327862573255095280275330852179496162242380546766071702611180288014596644
    n = 115792089210356248762697446949407573530389949469094139830229620791129882263767
    x = 59720278436995453083503249034165803004100479993241843618237451988011830510542
    y = 12248878538507796390110693948532451868042639293974399185247223094979094319272

  • 2022-01-02 04:53:07 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_C0AOq uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 26441805697434433291484120567619261883894322933812268509774458355624089934561
    A = 10496376080105222013544250809807289918175849346704614805826485512170378548644
    B = 16009958714510775415339965702630398477572222673820221181222714721888152116743
    n = 26441805697434433291484120567619261883762115665028914069004023036308832722137
    x = 7570600418643549365739007197167120412248808759550908228024946066441427398025
    y = 19275865682171053146308058422838770022822725900488459150200106178873026190282

  • 2022-01-01 22:41:00 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uFcrG uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 99524089896935590416195041288737147518952572830265706193350068773179194391251
    B = 70170015341721572867167447951907111964478736911182015877685447196350063056223
    n = 115792089210356248762697446949407573529433751632687760539349312400675148623732
    x = 64017528474058905038459405881578987568994182592772369593816887160055269267996
    y = 65386729005208617545777048603146799027559479390655536082278816931720641545550

  • 2022-01-01 16:57:41 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oFfVY uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 109161207283263527286333572784558550473361629500765864096681271750657169452683
    A = 19839358675195080286961252563084379114049808727847894635010853524338401458406
    B = 49230937838761691082949929421579394551603424356377572012138467072588740697867
    n = 109161207283263527286333572784558550473269714872142626983408546400975131262412
    x = 67698410116269993874059162493988384929742561094908058380014626435210871982697
    y = 48161068425549422362936990852069229932030913718134220419492364855523462989644

  • 2022-01-01 10:42:22 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_oJ9Nl uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 32774954353858706992713121485682578810721258217387649535155461654161901914276
    B = 60751726684182809641205731068544770312998588246262358648388454055500722655412
    n = 115792089210356248762697446949407573530615637176076025781422190712134199314527
    x = 39913182362515433617805483898693493473880575261363394277087567650584456676532
    y = 38127271491644783235675343393112634258918341314702573380117695648262737539486

  • 2022-01-01 04:41:03 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_rlwtD uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 74656275813247196454625224298247359863049259366542792793876582947281782636033
    A = 19544346656495254849012881728405228962593780863350046218137970738505755138306
    B = 43698377271709133681659672330977140988001408950641099469516243409824530179567
    n = 74656275813247196454625224298247359863021202904520882400352051642732422490099
    x = 57613170496132569130108108624864191769218692073840325135415859677833945802372
    y = 34167920284059282477702421737062300577058107323810338356682130919463857623672

  • 2021-12-31 22:39:57 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UVY7l uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7862229388481385343353725857698301640551351827826905013598848176102519668825
    B = 69759465598154272637175235700133253466454514176924862259762078741393984149850
    n = 115792089210356248762697446949407573530592693539542866722912892523983963633556
    x = 91039696715590733198916460055400279739568604087432295909659799275859307372409
    y = 23932176498916236731677687764284001509250245422042271820310722521364590024820

  • 2021-12-31 16:40:05 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZidlM uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 101261162110082482300157567211980331168205134161431512251424733967521850226599
    A = 39919878536918749440881477337990304330617771199504195365828498178828479261569
    B = 85123539096859946523425869424162197521238374010067319925863296124780012879467
    n = 101261162110082482300157567211980331167697953980283338960589693513184655308004
    x = 86318352594541112757652329112331355579787997218733802178295214892622690734909
    y = 75466540676210433924060282035370203790537382411719172509027419194912510295174

  • 2021-12-31 10:42:00 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YD5lm uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16661953509347458517215774593402745582611690342349453202359068290244848051838
    B = 23907689839166716431371681397064015691925998719301065447775645886630775907092
    n = 115792089210356248762697446949407573529435323523508446184436213543459683347027
    x = 54044157672217067340991522925069233351547752549215816450919641888621043463089
    y = 35044644734423218194108783597215292365719143218588353584260742276979412872216

  • 2021-12-31 04:43:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_h0Zuy uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 43307724851355375460742868595991616150603135505848975025877233269744864785053
    A = 35243148412312307895931776974591058099689435474991266531825892147620504549413
    B = 13380346730504873106687500869236594109839034756611758250433809322969878982863
    n = 43307724851355375460742868595991616150733523327559976212443812621742251326221
    x = 11403938791487006541770698713863769199912565546863176539247458379336588564517
    y = 24483072226975784711881134688248900923694891970826086132042014809546115640770

  • 2021-12-30 22:46:19 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_bVL7t uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3548825716109986600288299953553321644291691291351333788973308366244858206091
    B = 81532370687308470483831831849760257490932675556712635644366940838080836700924
    n = 115792089210356248762697446949407573529894729909327197659301679874339606588572
    x = 82948803770080793399715094518933847583800781418673363295131049443722866973605
    y = 22900174933136352375122680918595222633231661361272388834283897409893244996000

  • 2021-12-30 16:40:09 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_CFi5j uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 57608584222881286579775441780365490558127782308949283316482326477009790075859
    A = 16964635227303729289691352175263245050361280555197398784276161578491840197355
    B = 22690150504814475004556527864125557434035573022351190985571950744347103668936
    n = 57608584222881286579775441780365490557823039027087252518875873094099916306852
    x = 26806613579736806023928360002811312331033943854398923217514669504135143637267
    y = 53978404664313591694882537800745031030993865565984091597827776731310045384962

  • 2021-12-30 10:48:16 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_gpN5Q uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 44941029712376445607493174594143647820730027159417049373689755844363746088896
    B = 23840004203064420894305345840917145061935129931490020695120766860517970202223
    n = 115792089210356248762697446949407573530428005338947458921136407180785105299477
    x = 7195806511753848173792770598400230916556949324439830408443058857776918819913
    y = 27521069343245628051841292084581801944808393003129962556121587723689062430546

  • 2021-12-30 04:41:36 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Towpo uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 29303032083865935289535730072372538737439866262751535287037292863585611981183
    A = 25537399472075901392488753510242335242581829193008437992128369914404938486706
    B = 21356404079336993102229263082173622714752118190029891345111412636677879212929
    n = 29303032083865935289535730072372538737321397343278204257728009295200453131567
    x = 28582594019724358082568493207392264457911978924706868300210925576968336047072
    y = 23263344181244969937348873745561322783487884755006343201596620927823852056628

  • 2021-12-29 22:43:31 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IzKSq uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 35837635276997609376393370267550305038335746436965281199451176936114316779229
    B = 77409741596118657931152802202671114180082620306147583346826698926804101331793
    n = 115792089210356248762697446949407573530191410381002949546177935375070461415028
    x = 585163925502445379603598486353594886159859329515446065347916443668071794528
    y = 38785259308723380747781035383364784906045923385759722105451491004915752198830

  • 2021-12-29 16:41:46 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Z2EGo uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102014328445936574591635519336476469622921063773880694688950818486375052874579
    A = 67759003194697179658599928884439934034460391727617780113967773830766396127338
    B = 84349968176245423533186675625923141731153764481333059818772651359687698211310
    n = 102014328445936574591635519336476469622420033567372751687462393409731884845244
    x = 61528077826481886234399546916081007872809889458533934977286734670582634873860
    y = 5061133645167720438106276513070315122402690545235230428217408302088971854308

  • 2021-12-29 10:47:59 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ycbD0 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 87639824076600958315291622465007853733203864496700005335101440979944753475816
    B = 46437650120970292676414040362217479963705020781872256712830931530695426780326
    n = 115792089210356248762697446949407573529627543060807846519281323266760223654067
    x = 94919511468565468766377546125250790619111304540287472756862786069139475892897
    y = 9330318449456493066599223352536610876843285255661791389867033350231127700562

  • 2021-12-29 04:44:25 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1idqi uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92495922007648558260935543506355472088342187569236250367945420407700721106463
    A = 24697023600170675579070744349557884713879253888109401624412333624416369014273
    B = 13521524240215472209443202133386616976701489113615402561616512856661272014524
    n = 92495922007648558260935543506355472088701541244737051576201947642486850924069
    x = 39076682878122326115172898023878139546679578462395999085406251586382626621469
    y = 80189449017597463264519503077378348361827649121227599818694887608421751952382

  • 2021-12-28 22:41:12 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ipRyP uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83481601443499169711133520099288420283905806517439691435771441096822471833365
    B = 94651142428418091569747009301697770800224430314804144236003666446477686983325
    n = 115792089210356248762697446949407573530305204344373776124761529644418886401972
    x = 48726731826808026396092184915001945262432960682978399796435268691591731215559
    y = 27867086339932184264616916709399402133817647162832018593066594277888566633366

  • 2021-12-28 16:41:30 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DjiE5 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104401811242179735549738887032088114656716901683666605489321687019946507325783
    A = 73096946090765582239703229382259746564751895357117693344303860181712080608165
    B = 14454808232743410363763559772676553430868714036769481467049103381443423164063
    n = 104401811242179735549738887032088114656789490332235695901862605438027260766564
    x = 33724591138639775961236487407574084295703008287369961226468204773571075771500
    y = 96884055634693287916151600292954910477272728417153157123420617347587967228496

  • 2021-12-28 10:40:30 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Phy1l uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43137409753245038825361728903933985802520364715519525113103781566399371596351
    B = 59920124294459349016031543672905243381669329771426376680594880522971923165007
    n = 115792089210356248762697446949407573530048512408635760795614609438880990930861
    x = 94674467721504972506247974476116016640990727804786973460484326604227600074280
    y = 62760145566221871687386027049227633749020303665990674598883986964293984786084

  • 2021-12-28 04:41:11 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_4MR7a uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 62956697468539730273250650287978970774023266556788801583238540131930964591437
    A = 44691829123984888927555496196791718580365369509652416322007166722237302030143
    B = 20590704694117390452328921426436682046572332081249880808489516290428076758323
    n = 62956697468539730273250650287978970773709121398048739275559540930114620727917
    x = 62503045697939582840165295332017432377182377223211670977936023878091312321080
    y = 41140296989043684381063343763257609349573121573131764947279964339386964675594

  • 2021-12-27 22:58:30 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LesdJ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5744346941526598563563100808835536478368480524299822746149117375111613996268
    B = 80548820857859562656005968721365480714450829106186930107642985580172935074436
    n = 115792089210356248762697446949407573529811472779895528661820093870966609447812
    x = 35778585467186748574482570535672862425345696948842622205570909869303849178392
    y = 2166201651827313457037744822442609624297159840546830065585284588032903599022

  • 2021-12-27 16:44:20 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_tD5nF uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 94577146871608446944297782417263666370140297521278569088929319804042309668931
    A = 4056015062776831199418553220351528404203660634661832210011951105473086848662
    B = 31669047915922032543858400277597205979731786445455992386506234911424462824727
    n = 94577146871608446944297782417263666370587662872662574858087911463361616794612
    x = 77977861242920980410279197659531451709374419478337617838632184148109408770845
    y = 70937220818888780470459265316256520765677491106021500767748228172069243695276

  • 2021-12-27 10:46:44 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_db7pF uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 26341851198094508852287938381654023285985325107832119628981974773225110245563
    B = 73562086011023274041306823249702666432401860122604939218926713458888274613020
    n = 115792089210356248762697446949407573530560508478808856818930368426667092131137
    x = 19095958938283272594313148891956267821619508296069538436547303176497690124448
    y = 114095635030313269142353888480979688632899578146484208155788065833053468103098

  • 2021-12-27 04:51:50 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_vYgDc uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 73335966675644832304664095247498621032411813840232250178827769836349727289821
    A = 46599198693680090202738505607602402077415637955925709962950911269502653034887
    B = 14335279056228650237181054579551310482640312708163422043341001612536118471212
    n = 73335966675644832304664095247498621032701568240121527126072970485506769405367
    x = 63193028389110286754614077267144115659712390570283151893311705561178594427418
    y = 43386040824537156194409558363204426284846611821895067086533975270179107302106

  • 2021-12-26 22:40:44 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_GRj7Q uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85386894753965625378942044236789312246962302631921387103578992711005160903845
    B = 62216340940959910907234091220028894823396515582416777618760654890612847733652
    n = 115792089210356248762697446949407573530654478076989124164445954654500377746108
    x = 73311376028904402509715956537378477899335199032490602552461670717342286996947
    y = 60527194073837227188687054545343462603102607874096254721613817744579221973354

  • 2021-12-26 16:42:58 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JK3jx uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 16822633211240019112980181983675606987184749091728468621354765483171741762571
    A = 7677597554659724583994058336473936391920667141997285816448085453363139593853
    B = 2064216301567959206299597417811090248826946278850163020195807987388930476728
    n = 16822633211240019112980181983675606987145265791844199815759153689068784262492
    x = 16352739510438265946678264830152961068204798083695782100419084998009500388248
    y = 3490441894505253765067212554082207646919630368889255334902913024251671104756

  • 2021-12-26 10:40:08 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Wli0e uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109055802480884318619380482037959963907824623446572767250673466847127593683342
    B = 82802630401593500481032981714412134150479061658282093132863847745942240719393
    n = 115792089210356248762697446949407573530632768951446248440450493469791869351027
    x = 28356493401684911601907403717549612687603574429614459967886810076777471037693
    y = 92907018934608771718610032727342918773224243228006689300353138144933361026636

  • 2021-12-26 04:40:33 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_9iwaG uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35987358176393094428359421043022068948765874471622281715779521888397757624387
    A = 32231813442504542587307026876113245118144403247424491702534058117156761957143
    B = 32651632967101219894132668747688863739415800469395343907075644663748725029777
    n = 35987358176393094428359421043022068948731448673545292589797778385264965207507
    x = 1045594109612987676954310243309220775204911995188736264968743532340931902346
    y = 33755548567819884512047590367230698956895250516067842816508910067003766801884

  • 2021-12-25 22:41:16 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_AlGt2 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 94110231529540076725707745125810243490613968302073241123187141491540229293165
    B = 79545430987677760195604231436715584573657514905489691609023572945533144751283
    n = 115792089210356248762697446949407573530521797833269298758174585233403674532468
    x = 22197028340917431156317470495814695349731102209047260004367149600674892053196
    y = 91439155169035463347084131450992977449273777895153474297017172493622617825536

  • 2021-12-25 16:40:32 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_aGC2J uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 75213339748823532148741677782930999683937999966844974649696791905582127643791
    A = 17945155089626894178976549410344646859280493294597044988189970783367356964894
    B = 60343991174659179628461688764089636609513974197169038010227391946995701249281
    n = 75213339748823532148741677782930999684130785751199112126815932230536559255252
    x = 61434318100079235914080922927438130959639588324691066143206154734385158057167
    y = 60742194610588122824753522725723359040671417106237565715850672389281163185566

  • 2021-12-25 10:39:45 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_LHgRx uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 25916051846822651393963240767732030900903652304994192065819546945860152960109
    B = 25236042810859386248500132429489627657526011708639947391837544882866298365443
    n = 115792089210356248762697446949407573530064662819696662107976997404222028109241
    x = 89791262326119452853460037124755902099158615272404633134439977107263053265956
    y = 90829379651750335488720710453531738925514727822679999095760644557464885221186

  • 2021-12-25 04:41:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Dy7TE uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6377092026840555284067051951454337484602733201848043577053542229586980851851
    A = 2846429139511389463921824223458478145897001482054440000612096044937691891457
    B = 1204178377148385362329128021942225674245417593135861426966523953920862609447
    n = 6377092026840555284067051951454337484533260853168388267326669454596130628223
    x = 62588563103920907686851337857019613050788376679215726606442568254927142545
    y = 3519536937210303219799369951785566518092841468852616548186385761149598125372

  • 2021-12-24 22:40:45 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Bkwhc uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55319368613526817117262030986011232689292016814691858068679617428697155348736
    B = 78042779412254707916609528915445187651617688927640371414056647380518791843811
    n = 115792089210356248762697446949407573529988508015620316984141469383888681146356
    x = 27587024107214955539709172593089908427521238841509548255888407022138487024435
    y = 64752751113532558680745523145286718312542467595533753562756889514658431324874

  • 2021-12-24 16:48:31 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eGsvN uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22079938566110141659378981326925552240625428366850835330066506436959998680487
    A = 10367296815831349168400041560534705191382265614354450628418306750402998316977
    B = 7650910364624864600324635103237740177959402981158109155283682865394146718459
    n = 22079938566110141659378981326925552240438794655855499385798712555417838594924
    x = 2474640369316204379721414862155354723517975408553336798575149993907135406906
    y = 96170572649586204740231662895248243262877250337805440181252920004852584816

  • 2021-12-24 10:57:11 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fNzze uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 68572154688973475379305742828368596991424183618694912489086353700678358874133
    B = 81132613964065579692056279123503661214473447197179311398158860174728598653015
    n = 115792089210356248762697446949407573529499724138014950800216135546318439972891
    x = 43966231224303111990874960953955650030451192634847198573029541519925139060301
    y = 26304428762587134611476096942364772986091583550055994722279377005452223555094

  • 2021-12-24 04:42:31 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_zfD3U uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24879996467645355959251645727871679590951762731059568889572443638683498649991
    A = 15847779230634445859560344282865242169211872243354510980334729589799632184315
    B = 3074878903798591100797565609325375902753775807911884301158764587972123552079
    n = 24879996467645355959251645727871679591017736812857237302547941018285484604263
    x = 19870019406884900384834124848337328368793344190131018812076251508764244843741
    y = 816743909974936685047505092318680403933901311000209115069794812462412458720

  • 2021-12-23 22:40:19 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_C5or3 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 9273092734833563488548034525188078431104883263404935227065581152981726419941
    B = 18424333125582914155774296628473971106267891573441008352971720884953691424933
    n = 115792089210356248762697446949407573530729270568872242726298516875655416208812
    x = 64816092746878191389016384327477482616871609797304019174811378322485614753159
    y = 21462099157142487899687349431019979085933130203334246681076351288389739931792

  • 2021-12-23 16:39:43 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MuWqO uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 43803290523567296796071841702755698196401042306008604835082757971667429720403
    A = 4863016223394324906627701228696863794130343404704029525421638050628359483264
    B = 42313247507087908863662413764730212631542476105184281719622735032550565305411
    n = 43803290523567296796071841702755698196678521998222824318873444820584761146452
    x = 10742706053348537934684170250923671974958781658386956280506973069868281130583
    y = 30452198735148375640362664386938637235785604538172598357645065529308899534828

  • 2021-12-23 10:39:43 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_wVOcw uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82660384891507717179609093104349590436378406680229500012134901334039614198140
    B = 72222314862801690333500389712245050203975754280881797740618797741219459908483
    n = 115792089210356248762697446949407573529984115407901714916674008509481611836347
    x = 14042031308987030179688417290111729474624750564525574784070234368720709188799
    y = 70444316104691420584314992085529962271946111620861554167090566708816363168460

  • 2021-12-23 04:40:09 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oblLQ uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24659117497124139808991115872863373889723241500302217636281071599354374688079
    A = 21005803856202626156735915624245024790411361246606454844491662858678153196443
    B = 10430610326508560189996761688164357247195421880305653519165141274339093450334
    n = 24659117497124139808991115872863373889819787750299797053565295880850358223931
    x = 17524502730177767617853678360452257342147592056802867668299549246796361554712
    y = 20071793474860142635203758714979966040204916021751171872316628114209902111190

  • 2021-12-22 22:42:19 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_7SDpq uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 10276068887800214491745492306008214473946838033983539571591912624738687668957
    B = 21740382797153350789714807878391378166083209301941096054872215034403308184424
    n = 115792089210356248762697446949407573530113094448785405743743312914488749241708
    x = 81733637247111690772442051207732176388569792993662842176027836310654552209132
    y = 17789734146351482136749398009295225072985611095908128274284751051996484072706

  • 2021-12-22 16:17:50 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vWsAe uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 95395388792006737646014622997274658766087718956744517014961842593572630046131
    A = 24850934208367480947284391874720214744432897914884105997754270772772536340193
    B = 17738549873443618976322785708076479429841454896735255545837004105073582953503
    n = 95395388792006737646014622997274658765960607411704534635324066585841276542148
    x = 88153114914358687426618610618063055153637560817956970140385188626989646344113
    y = 41961376423065391835356800687345889493641130635995370074983560115730134783188

  • 2021-12-22 09:49:17 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_BfgPc uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 60566072462350089762606477764934359362568917787564522758894293096167149898748
    B = 21390163885739454210804737429640227400057982724691138464439793496671750274972
    n = 115792089210356248762697446949407573529997758600534656977203740961553927512567
    x = 43622987481384260221612828666853854496692517458144449387162976050269570649404
    y = 89209769167848441594426166509188878621617096287472680505670172054499610255396

  • 2021-12-22 03:45:57 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_kolo4 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91727797797228942539692973428890601886484645216231716260939546114588360617991
    A = 23710536775508784135881469264567098381776948688654263879693023495138925644052
    B = 67114415046720036232887776047315142981032268578573598761567073246144029667154
    n = 91727797797228942539692973428890601886056842718343951508850360260274123218851
    x = 45259412198079568322171328250768016728413978240336259680482805377104917429096
    y = 80673268636328137555079902797115280179299162522992581967422993650916510786320

  • 2021-12-21 21:40:49 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_NAY8q uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 45169698620662963468049382078103402074888002185012717610291562807736189132526
    B = 56943579022326315369664900999593166120177866038898292243007906448622099489181
    n = 115792089210356248762697446949407573529733921648893741200070129058720378505532
    x = 77982507667600090498340770501586983913848393852096562978491081088954495194427
    y = 48339540385176072261656264031909151608722981826322530969376884333125928598236

  • 2021-12-21 15:40:55 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZiVmY uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92490984977484080358101620383715815593407200643238659559376390547433723027347
    A = 6281410088500038043673851071065696577860285175373037525929013681773801636110
    B = 17899317278011135911323679309785792424421316964806121271027927538117247630334
    n = 92490984977484080358101620383715815593898993970447778319882193338951416599988
    x = 9168883953952954511138047837247678842912357434578049266169771625326038273152
    y = 30344334626423817263503111074568190491782148643230889960294606098032345351328

  • 2021-12-21 09:40:29 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_px9iS uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 70327760547948399429569276278135241230235967670409318327017012456283268726118
    B = 86739060285701263634533964733221581081870042972750840603090909644935855929155
    n = 115792089210356248762697446949407573530040794107102578923058019073396229480097
    x = 35722631686412286258758040540291108646485238692306360241262556464668370969192
    y = 48666795521267334123599592314821924919577240776609363761174522781697031138496

  • 2021-12-21 03:41:04 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0sC1z uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 816397903334551017308449937168227659594094146353704206147943113493549318687
    A = 391096595825538220583184168501394237731453335426477637791343819188214617968
    B = 513709426063039733233305710000022841783752188343898871972349996873065280079
    n = 816397903334551017308449937168227659597018642705029029901033773672893001193
    x = 336013278410352440362426847040112413334188881123611236557252671672398185360
    y = 261882999168221022195062245195490206917924187573086346338246389430543470876

  • 2021-12-20 21:41:55 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UHgm6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77587674917872701278648392465891399452316351377463637973323626095020155359755
    B = 33722499305815533390955115843777126791964482014727650348683275312494359682608
    n = 115792089210356248762697446949407573529648844056338118084224750239398947894772
    x = 16546931886293371436666725004090451168995220387220456034036998799406345261252
    y = 32578214530640987489577690023182566602171194338608883031188620817978596276372

  • 2021-12-20 15:43:39 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JWYAH uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 90145772320970142503358614830887392470076252913985922643674311159643941957739
    A = 53604522046608400612331570177965543573586820208421908678419513191717376478763
    B = 35175218181814658838400239501154066388011333833574335068163242477617299249367
    n = 90145772320970142503358614830887392469642576190890998518533207922866982868084
    x = 12683157710823961871618854784157250568141692119146235002751744216866695934324
    y = 55468944112218614411814868601925960515709606049751090984548091327512330918894

  • 2021-12-20 09:47:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_hbNbC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 54199621549474882338948536538510420735379072256958738159953295958641892483810
    B = 54231214250765685641802601042126104348856780913979597934768431304679827905764
    n = 115792089210356248762697446949407573530474936898880783770999584944197792495451
    x = 101809132399945718358960870555419692197505712607022083498338621402293709544474
    y = 75665232263873534960660688389233570962183395541881967257999781074523351619412

  • 2021-12-20 03:43:09 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_IDthq uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64737130219846600181670391671461765360173649846861792501609469860488613612249
    A = 40243353633759763783457957812438567588917206859778619373944734822559016663942
    B = 3522259054888368420254874949195413920457559010567913410337602176379006242643
    n = 64737130219846600181670391671461765359873020695756660422780403002285290671801
    x = 10176987150537191994678047712697526397076802356650512265726913892204695723857
    y = 21977061684028078417710186493153737424247655400286956527021339378795967251858

  • 2021-12-19 21:40:06 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DV7Wk uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 74068139267937426124084898868100119779061422808701477563910865393375033709430
    B = 44116940236657731261919594822500762774044891974178853741004463263456652701298
    n = 115792089210356248762697446949407573529683780357445491456536544995812220902492
    x = 105264643863008996025991344147949964928172487152433542501805994779822490303279
    y = 110925088436170205201019613486756208051132073737633716534097168818604858218470

  • 2021-12-19 15:42:36 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_QUkqp uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106223691295488033197734939922933124118772721542524273011411976066297073681327
    A = 55018156083342048335324099455161874437115894695031738006625983166650592160259
    B = 17927796788732699053536673419077766993103006558275412920499380032830455956996
    n = 106223691295488033197734939922933124118836924962630571863954777359105046627132
    x = 96441511390821349794626982135942767262810329520824282283033841544768504436426
    y = 51558463087679702770509481187313926749645402646357006749409987840397305623244

  • 2021-12-19 09:40:48 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_lfZJr uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37641874750122448504432316282260570329247141652748291126768081162256744345141
    B = 95766859384614640369515553816532461167788462179276325961784626976738058760021
    n = 115792089210356248762697446949407573530343363036879279575463380701210999176613
    x = 53709324980931382956139428206847613888211057559204435363867942632527340449385
    y = 10027533655022718657595807621451442404812274967403788016683678513400875467000

  • 2021-12-19 03:43:13 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_7RAZg uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30933426854330564470979299486843386399966821166887630529146956029308462392267
    A = 4363011903258253379630854342162128932676943980238911021102602880406253556994
    B = 8620448558004983758920444790101076771462115061103100653682345552120011106335
    n = 30933426854330564470979299486843386400157533768903757215289098576213228237109
    x = 23397160352659761188056967511688858107090662135251700917834865502089300236147
    y = 14269758323647249268776416645504933436692976665105856489482305526336616976474

  • 2021-12-18 21:40:13 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hhh6p uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 28674045883936658741981831418343219216095639415016989380347454688450270580625
    B = 73154824151539064981916993122318223007539222736426925815142521265955496580463
    n = 115792089210356248762697446949407573529516870424960290929796762814865734980756
    x = 8671465345764848373626545764187587136990440441130515832496174408521474857445
    y = 83997968377611537762818271000037528791684354308326227365001190194117692804350

  • 2021-12-18 15:42:18 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qHxrC uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24191523335245748077409733319297573415143168178113328537982249861615493920779
    A = 6710193910024210855167533676306514508989105170373156423884365215328211713440
    B = 23013146897450756860397987070849889905662221984665947126564338563881124525819
    n = 24191523335245748077409733319297573415252871173028120539203926145262401102412
    x = 20785682850869382587867489949549214823373486586290510487383039828328920569464
    y = 17452519388181556546634405066570798359929024979625205020034054411730150481914

  • 2021-12-18 09:44:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_iQjJZ uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16313858169225197511688174237265798857715268926478314064175690758691843493892
    B = 17794187931897159058808968622704707873534317564389087021095519059810801607277
    n = 115792089210356248762697446949407573530636462695250105531092711911885708499873
    x = 19382199594547328327298225583206488298925031965740194356350643359146184242744
    y = 21229909050312347174854982729344964481702489450472662317931195290029319251984

  • 2021-12-18 03:48:30 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NXFVW uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 90303258128641967525655604064865455389828088070890966076254641592362950236081
    A = 6133250534860606693331939336894536968975582399197642097210855756990831061784
    B = 31066188316515461725199837791350660708378679090389734184304244220515587335886
    n = 90303258128641967525655604064865455389281044374633744266706354595917252653763
    x = 61085349865621127446259213915142919789623768155971047922117031569569220471876
    y = 49945056972843829370355041099615747674786270856526479519585787255275602885560

  • 2021-12-17 21:40:49 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hmLg6 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105231822762894099973327924321939020073718308229702236457432552486320705122078
    B = 29457197710840534715566065982810156050477243910776023539159716126754389348531
    n = 115792089210356248762697446949407573530726805434695720483252087772333179713412
    x = 3175650580049334697293872683255826605634363299579254764953468349321489657430
    y = 62374151296444106966596928131681992501628067669358976319543743977028407805838

  • 2021-12-17 15:43:38 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5cEB9 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 39536227181569001875317602411858896089253698793142209114451456893031623565659
    A = 5602818698166511820105178485004929345831952914574345484856814296319040788288
    B = 18934137285901062974038477916162305737817664633627608875997760643931784765123
    n = 39536227181569001875317602411858896089350384623381849121048961553721612944412
    x = 13177450928492081530628201444904901024875248038686295554607753227586227082545
    y = 1023570495237611958323518985362992314452437227793921974867151212261723484332

  • 2021-12-17 09:42:25 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YrTtC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 21567257255570258026834160846991777703517262064995071226948556989306640924360
    B = 62849158027745075219124764784659651930083594594371160068813259456426478796522
    n = 115792089210356248762697446949407573529883671989256134414327897420197590351117
    x = 113612948359671344776529106157877730527727213734205105830060114821970065263362
    y = 19684557455712500874390498645272330320470299718284272844222499919387961264962

  • 2021-12-17 03:41:24 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ykPOP uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66805889693857444041402451512346307495681894194374688572760988731377088083059
    A = 21367869316293423267628776058226862594359079968744306317889628892286839487066
    B = 23041702489204942582300003898713867737845313576275322921176099411206216341284
    n = 66805889693857444041402451512346307495574745629052621590214126706623017010391
    x = 48167700378748985496516564587972242321164979846144498507809823953425265395352
    y = 6570313782513580125929937915896675851742435500872101187567143829119850533708

  • 2021-12-16 18:42:07 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_uwHqe uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 12568628996986113715771240725821206182914117385287671491263752208017944949901
    A = 11347431630813990466873447411819527019754495515885609715263478993995614469734
    B = 131978508208843895571387995719559766199124918993865793872997074195050574207
    n = 12568628996986113715771240725821206182759756066153266217294569979481817931601
    x = 2610066001488067072387968065338880978714397838161073889352860460378766090143
    y = 7262187426486185770479778581733132395365741089879884467996750684580857467514

  • 2021-12-15 19:42:50 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_2N7ak uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22477413322022801230826124756916890140044503370690354430339081653847987759603
    A = 6485295745258834339599255870527342872718972477030582839427439452383897702786
    B = 18885783411569843442871452799588820025159736275638486932231348621918031604786
    n = 22477413322022801230826124756916890140279762541167142907720135525137048751771
    x = 19541387958756662280326513645181381818290416051557588234119469389088483216290
    y = 2861619836324990783450441565992892485361955300894570788815864642863036075092

  • 2021-12-15 13:43:32 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TDx07 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 9035208109108389733387873672773161287857748638499033177833038455741549452954
    B = 21260404135566025168333580876365229416323466861162702434329505226605729244896
    n = 115792089210356248762697446949407573530169443215854414194514045719851125320212
    x = 67348346589044797215660882874002041003447073998051253815960624905871347333185
    y = 8802023135172339727567348993095831937272844164398667073935478953734882049282

  • 2021-12-15 07:41:46 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2G2QL uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30774121025701698953574632539027310621983935924305316604711894773013458552011
    A = 11520941910463193430719324971899365689949739379943540177510493612417351197531
    B = 13921646509498712710949245870842967457201155257247872730226621973940924513366
    n = 30774121025701698953574632539027310622312325135536165882283017276235859123668
    x = 27401088685921589622706430103292667813236384784583801078277959885172700553886
    y = 27161139453196036196786690746251383184110403548037407069301523235421103258914

  • 2021-12-15 01:45:06 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_0I7W4 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30321606469220190688602262495299612181030915486616183586726764388791479631582
    B = 64947836787635008170895349320023540870441879346218976432060216855309099057407
    n = 115792089210356248762697446949407573530189047775329657153609396345820834985631
    x = 21352813841373879997872533811798163031610296778384739536295876041346082096316
    y = 76398761295890814417390574396360486825092426732884442074661975436111830376340

  • 2021-12-14 19:42:50 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_m6PKK uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 52097310025003692723604818901993975803608267260910937383287474216161760395517
    A = 6391286459174873546939726868669234966988200462045830518440355526295807618525
    B = 13594608424689268208491367743560450090686062566712310569743129629577903417585
    n = 52097310025003692723604818901993975803404642633894967341190651368500272906323
    x = 31692163895326506826165033273030718413239026559488707113992134165788907794999
    y = 39383738923333045494427002858015825523301267841096458046289546804418048061074

  • 2021-12-14 13:41:33 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cIrV8 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3857143590247154493276650167838546893481531907252219708978184263540637380990
    B = 58951366766490688717327755641646828951205539196104990297865659829596641058667
    n = 115792089210356248762697446949407573529595039426084462506024015003766333888668
    x = 63968670071951691577763002172885274684402341190308683123885591857691739902818
    y = 18004068512183602760876053055663496738441470243418432306905759926168483368582

  • 2021-12-14 07:48:38 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_45Hrk uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88314198380469842374887704647921607222730543197521142421931301767427370844499
    A = 17515276476396196279527217733741106820773082302864440244320538124130027136557
    B = 50718609959253253968472104725058970600494383851436030382907569854765442104765
    n = 88314198380469842374887704647921607222245711135377655960258845789041488536964
    x = 18835302555377100238423778840977376387090666075244741645359845427683497060449
    y = 2572920491696965601306962488519495526684498070567499924735863855013744628470

  • 2021-12-14 01:41:23 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_9ZxNQ uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 15287705201734385335716822857839704465635439983407799609221171799821304800742
    B = 95317090538285911441494518811874932657770237577907837880886152899101065467366
    n = 115792089210356248762697446949407573530049180468916222407112628460148488951973
    x = 4600873773516776253359079954698611355790957700178301307409805752924159912511
    y = 26521274452401397803795837940252322482140801266979619157717176768629167747174

  • 2021-12-13 19:41:44 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_XPyod uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 65458436801837166560463370363521381848177870792108738707586823033493755534499
    A = 20798059868044326608221687661010419492224263693178494336226503761233423810149
    B = 64273699922839967674126292602618800639155433826346320357099094250952438716193
    n = 65458436801837166560463370363521381847877851274139333539064829337311359192089
    x = 43013382327863489967064194483686180527975367402228165491305977543053680210380
    y = 34987561733151007829389391984895818664245181397819904275247075821279209313112

  • 2021-12-13 13:40:41 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ZwN79 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 76952685698545770339319240630554117351514480569030021391216543807388780603771
    B = 103144719190473050524552921244841003109294340240613312154712353316694603324795
    n = 115792089210356248762697446949407573529761555266137656184029565653224770236988
    x = 43814578271330849523353914834167324743378133022963892588853236928726501384867
    y = 57866665984086218732887530374647748133562307044238804940826970666266928762474

  • 2021-12-13 07:43:23 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kIhDF uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 39234103192487697474292286089032795550074992659053886768594726322261809524139
    A = 11047482297504707727214023810695679603538252798073284186792516013675286577193
    B = 13774192294223471020561822937831467448652987511636363532094386663831476265588
    n = 39234103192487697474292286089032795549959471173871377453194349596746283179468
    x = 37907664721027268177850422027248552690706916711765243840352941969503013199455
    y = 15569150535801076923659076757802960012598422231271318093569419467026961262684

  • 2021-12-13 01:39:53 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2eO9N uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 72195402794355835758980725950329521285113420935490899466659901559265238970542
    B = 42297212200079951993102036980854673762674176329423788546777271480905715933915
    n = 115792089210356248762697446949407573530421141295855580150608960593052085949193
    x = 1068905220386156339385934180091392849099340263976587331237975442096336821742
    y = 35432524927293107166893944241646808978744426144147942756480867659513009474302

  • 2021-12-12 19:43:56 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_n6nYj uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 43402588499008878988134904039565115434118226985450943165751190614601704084537
    A = 39769496839167304342943606526763445429271429421553922649301260679149995509019
    B = 26900159785363476628634773689113689881851116195759360603892740860293299056104
    n = 43402588499008878988134904039565115434262864333581435379363671498651839026353
    x = 28166772653544762254706717585042678356007450089175943264035824059260008812612
    y = 1068598636477674069718183604965764886568158251949493398647849239724161493584

  • 2021-12-12 13:40:10 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Uzpa6 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 110817995968971708395973909011915588728566243680758211625688894571408466765069
    B = 94467696134005516581672377516060387218531777579567796014655504951966151655909
    n = 115792089210356248762697446949407573530328064823985848166152189536243346752852
    x = 5489862919004349656936166895262066711061855700253720117555598991511613691805
    y = 81503503413070273688354935689758701457750229185395304327196968881773585796382

  • 2021-12-12 07:41:28 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Lif1E uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6312379871078390095973846274040673496160502853191435314562758918650051416351
    A = 3955979112605245794648009413441751537172359804765849763296412900830233582023
    B = 450230084869244278645925094501286429469525533874689113664766781690315963264
    n = 6312379871078390095973846274040673496010708837455878197432315386742244401052
    x = 5045160005351415891125999281453207425288551062443369841970850176027442879857
    y = 541924220810165963910588052617011219978631316728405464639884395383841907190

  • 2021-12-12 01:41:44 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_l8v6o uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 23365805999164961505322504216676006081216551726645043474508426427795098450161
    B = 18334502512197506008138784123479673247913424108307977838212306193415861234803
    n = 115792089210356248762697446949407573530252519393115700514889152188478971857793
    x = 16498174655909919583765563263482507985742565232717774758014854765211272280138
    y = 109334938885999654329668383754710867284261702044862233364455386385234906538296

  • 2021-12-11 19:41:40 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_bMYBn uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 114112401311000914033469690363165251161084766892555313704106259584881077955069
    A = 63561117116319086389117481093451275624489277664264210121542448880159914635971
    B = 8697702636378493980934200513647412271111756300293765871906518073894803710670
    n = 114112401311000914033469690363165251160659253318035104602864580743093588489071
    x = 77443365325023315293710999447925065756786625986260732401306217191286693185717
    y = 29113332841001457325459577031012163591435461923932299592352559426495565920994

  • 2021-12-11 13:43:19 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_rxmUh uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46498976448075797475273951833398951765903570499133444036646473860237677806342
    B = 58544637905842179117946188038144125397894384267906526246131909672937733019815
    n = 115792089210356248762697446949407573529790750303601217565098046999705681317708
    x = 98847955966669959157321626181382369685151672365768978262759298801065018321302
    y = 115308465106388485781586660329249749127799978063342982669141277243798852417062

  • 2021-12-11 07:44:43 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_6nBi3 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28161332246395397659402756253443755259459936690294741986038240800286388755387
    A = 21318394602501720325836187547005546590272294579538791101582522603665949038477
    B = 27649646384790336405650127807319602012023719294982826594107655632376121599620
    n = 28161332246395397659402756253443755259359263740113008047167182723234181381188
    x = 10472689198403915902565227414001438593319018077557881777774907697357565993907
    y = 13126844120358947983965637165011491918440693682146409780799906790475267287004

  • 2021-12-11 01:46:33 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_52t6G uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 35458518598444170826093474336156186493850886157050240390592239686352134276119
    B = 100732994088877247042373275257203775539479929579836941247937094289482578947719
    n = 115792089210356248762697446949407573530584000998469357314359845144423322387161
    x = 4966281192631248968747742480341825464561993046556837535784403372413655689089
    y = 115210552574286043956920763473497205568771668297989348381045598706677363425838

  • 2021-12-10 19:41:18 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Xix85 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66339975146374328856820056456095682160953232326546134825559724861091947437323
    A = 55350654344404364378697484086700405788862603647667406426668063753538653626923
    B = 41588498467483332998739726120866120794052399956934252242486730500722247607112
    n = 66339975146374328856820056456095682160871584098173170721704937561675864110391
    x = 34727461668457548515217732554608240544863130748816974731850364391493110777839
    y = 27434273690777967441681971791629496995800654510833125475701355789369092316222

  • 2021-12-10 13:46:34 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nlFgM uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 75542022087974445005405331507515208294480563259998554308495062169797670805624
    B = 35512073738881993024888175093226137775934438150539216042682121356975421498541
    n = 115792089210356248762697446949407573529852599164647382618848120810343710594708
    x = 32623689227288941864607028041110053440932023545869335134913016967958969683826
    y = 61151755757157328867654173993898637910181980837331031555481196028282888092476

  • 2021-12-10 07:40:06 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1HnO9 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89257889370190494806524981788448064380662560485538911106793017648672866410451
    A = 66135879776686200357834470815228223589337257506953613394482577398415625195516
    B = 29146977882191755921881819595787560031185840403685267880036606298151708477255
    n = 89257889370190494806524981788448064380896143996479093152910226979065562851876
    x = 15063003196056024708577346979568731832879218306719405590613906153722430290508
    y = 30265854665117839941351718156406604725342025838139292289923256099549392604978

  • 2021-12-10 01:40:24 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_CVVIm uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97440471727316799723928525698455982340537009498649946973860221456186176165621
    B = 33688045455321807558628272762195781884248600432535794774585963290142077033183
    n = 115792089210356248762697446949407573530248476289708709834233106817183413118937
    x = 72985131468112968138604415787866160432534870674307902215555620927658678706651
    y = 109800452415990270770482714133143171747924201337199968435462707520015874429126

  • 2021-12-09 19:44:39 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ZthfY uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 38438626267946883270211587947787870387061061108755440093674329486507481574389
    A = 4005693263487713509767061717004905826627192974416768326626392568977672191876
    B = 11794265512761249975460808272483693544406176789803114231500067749559271777659
    n = 38438626267946883270211587947787870386998331018870940105106590806345342752459
    x = 28744177072839330008913721704476141286027851549228098976535739849466698553233
    y = 37177076734202648990264160548233239003014110244367340007000570280884503440880

  • 2021-12-09 13:41:50 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RUaLC uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 15522093352067408690724844109329811991503226140033754761040704166542031228297
    B = 96713843817127605814152450735971395465580750622639450658936413029412220088544
    n = 115792089210356248762697446949407573529651994208646263460872232500376855846852
    x = 114541650058773299716436019945814470841912606319963404768894080077338534281518
    y = 10164027886914284212566286770091993153975985309391721619825310315085698114848

  • 2021-12-09 07:44:48 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DSbgv uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 41669852817328218748783532414165774889788941769927441715347477348188856871631
    A = 9609816745020202224607342058503125917063087482171943896667270739640359382998
    B = 36031777820288729700021096069791425005990764463293483149431546474667204898059
    n = 41669852817328218748783532414165774889623042491393715573313868989343994086628
    x = 28072268181763180697931429614951261883604612055233107056195491375621191042665
    y = 37075819522082007983039605143115629604213542292012705603933489184015387235250

  • 2021-12-09 01:41:37 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_QmdSr uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 106788717995750434355551698683344708191848581412289639646981912649834231332931
    B = 13072085676196251917878665004790696823990334801874591152683499584536918506681
    n = 115792089210356248762697446949407573530083905624109030862408470821857208813247
    x = 41617322493203825239940749092228050948853698220944100460450740643229111624978
    y = 34221068755667994025038389232404323191813884722953812239337808003970185274776

  • 2021-12-08 19:42:04 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_FT2Rm uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 21699845864827360189443138610274925404891435448731765385444704085988704525133
    A = 2665994412979728579841971981747659766251869926594497417222395635003301417900
    B = 14290963840199213125675468518897036637163794476248588718004825328737638638034
    n = 21699845864827360189443138610274925405043070377015217059621083954576698643989
    x = 12995952212732441611819084287042059580780247167190145892639761239675917449079
    y = 1676885132682466009545769997688293277158023446948826462710451467805062827070

  • 2021-12-08 13:00:17 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2jA1G uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83838434372996890159373964451903249239322908713336599469806284654870944513464
    B = 95492712190746974123868949120058336362169852496302183592598626793496152461338
    n = 115792089210356248762697446949407573529873796720699152301721683596313318178412
    x = 63313996198295767911330861492367141154142179028409856188153737924457640029837
    y = 79169638319789194131974937295991380927814742228930088342260939729519222775310

  • 2021-12-08 06:45:34 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_6CiGX uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 27412487085665776053340576270359560381620742188394890499360876463870972330259
    A = 25484442956455744850881601568553147867367203402918651950351779424170553811563
    B = 19996401828692115419268952268887562210929438296219034543349915084574255579367
    n = 27412487085665776053340576270359560381481198447332325718883855324190663728516
    x = 11589683387821734363703840412280531225938356855189267782485343619099958120715
    y = 24739334059690781346567066874554852056493388006891060873762418907481675236306

  • 2021-12-08 00:42:29 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1TSMw uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82695047248147283410896027350846342656152538903832594410712642756251052123790
    B = 107238910106550073623417576240390480372987000673194330807497065125964385335912
    n = 115792089210356248762697446949407573530430129935370270145464451762824872601673
    x = 87517470471473801436778349074511240969232586138919992263669350653400719423958
    y = 105983999388794139943743323104137812226110057619954937455476930522993742267638

  • 2021-12-07 18:41:03 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_bia3O uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 94980389056848539239112702385509323197515674160824624626820286361021102890093
    A = 63649619871330408863401829883696713465405648580216052292672969446997506273972
    B = 70627975270804969190090555719223478041721994151444700701343266257493854061566
    n = 94980389056848539239112702385509323197119176280196940635028879812973816327129
    x = 39415918867957078004969988532772021617920321094196591100430003167399583176834
    y = 79539355969112245356525605943255800739120874441319421933323145253480823578012

  • 2021-12-07 12:40:02 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_43dcq uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 101564275987286415051160569085894101575987065392908847805069195934961774106600
    B = 35925748629433443621507804176906966381112893606657331641575489592994506378468
    n = 115792089210356248762697446949407573530145129441488604815797707868358833635028
    x = 85235711654380039652939068081561540895722500886272750649254000769586452023680
    y = 104647615494530955668333587732179408425745361362881849074323764760960611684700

  • 2021-12-07 06:40:08 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_rwSC6 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54378613618581601323533737386923528323110586064886819733731099079619159564219
    A = 46328430449674748704188107930562096221309441887221670362092724353222682472477
    B = 30473090971100966872040565000783333996127867863457861557111827280781025481851
    n = 54378613618581601323533737386923528323028147889920238223708508871440247599108
    x = 35563255281767458071358939815354920311321286567456068422201773702216522832132
    y = 23544785782238820394131458358579689735601819387732201154259829474713593595996

  • 2021-12-07 00:40:01 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_UTq0b uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 101719157293331230139757462708010533669136153919923017750010332473591779898569
    B = 86385775270091420498506569081132334057394439228509672337956144740681151582116
    n = 115792089210356248762697446949407573529621456556710317810803455197290994071647
    x = 68759232024862175599551873428676479039208303817108136404823224738453088046524
    y = 19757150646756665151435984055080140480143283036890211588288561631218764886692

  • 2021-12-06 18:42:39 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_FSfen uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81299435019218336017692990287047673648181616132778025096024213669646231428317
    A = 34217278382375843382101318035468693449719829438445584880338520188121074949124
    B = 37418705370831364555282882885355525744772708421795368219995246325863299735538
    n = 81299435019218336017692990287047673648033914456958769334666871226395935956907
    x = 77859969842061306764353151451264641111003940010906291417145019959488506730902
    y = 70266322022728283593322896173233750383506373198573956978518590336989370676446

  • 2021-12-06 12:44:15 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eHM1e uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 10686213198656130748255113698038080342290002954464311305883342001924145134193
    B = 61393208139977730956531315457489535422211018049033844835315581533595338700064
    n = 115792089210356248762697446949407573530158655258627104549915082656208229394876
    x = 112613204424670136639424563809696164882985677431382214229610124493248085543591
    y = 106825326925366055059647789398254099536311777895276844761984597455687875031840

  • 2021-12-06 06:39:54 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Ve5KI uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 46372417485813412810720707141035386214493039356021579370905029919873451659143
    A = 29894659048526857007070185205348425531247177758214250653712466614637633814048
    B = 10678694423708595969851235827417693543744400025112478997325766220244830646014
    n = 46372417485813412810720707141035386214448477492705686465136691714023838395284
    x = 1694983502621367715450591064183857825956744347303342536421928841279671131514
    y = 31557474927701817913093735469126444567343047039365767767189345527912076110630

  • 2021-12-06 00:39:52 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_lLfqE uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 107319836669255451654527909273760387996164060118703988940841300030754287802369
    B = 62317070004360349505850639660649407473747153156073649084693551665233572690108
    n = 115792089210356248762697446949407573530111180565974925045842239447716036250273
    x = 52164811269195860600463666898910281366316303850898434780103177532483863195112
    y = 69494452222543412527410862512471387030365421079353303171010881098975250833264

  • 2021-12-05 18:45:00 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1Ke6K uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102180125930241460412843587250394339370006564470360575524803468214030925632603
    A = 3509726423488221601306068309165250889636873837547570309011130919279902157250
    B = 32863643320128295064593683394341761279809651614122691378386726039393764601754
    n = 102180125930241460412843587250394339370284364679473723687245853895859094562207
    x = 89545739176211575001845310004792431258482080713775601956346761563327757699511
    y = 65071433321084423137107172330396485605275078687925957707018840782587112874568

  • 2021-12-05 12:42:31 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_P7cGD uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 108599718233814708371454484234114408418975326195754130506671425573928210707502
    B = 8613735466862025407598215430064222890815692440576692527572104763666095980347
    n = 115792089210356248762697446949407573529660388767163610371000621858961076140292
    x = 89854278353845478166313534289137488104241191078758981111055106185447676928486
    y = 44741772326196483872258927647182732319668076939006382547461698577516316633320

  • 2021-12-05 06:50:07 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_t783E uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 32121624446960257979952862255651805725735605127501857476943590208435194898347
    A = 29357967333060961828260949032282530866132296746637851811182397275089243042858
    B = 4958946945901227297026161876167447264960666583680230577690015202231458598639
    n = 32121624446960257979952862255651805725877938468797230363026727720832244915564
    x = 14985102157939913091944004678749748815968513063939647846473627021419284612313
    y = 30592685208996181322203560367197577645082334634335304025282259062340141756058

  • 2021-12-05 00:47:19 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_opdBS uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16091047412939324603258772340130726482671862052250924130345385530929945374276
    B = 41867557558472951292561542345256510832585367865058292482279055991999802147667
    n = 115792089210356248762697446949407573529490936320679863000554222382513344263761
    x = 24346112212536655615993769448372027244815265874704225495137120416303259288610
    y = 28813690245997239227926842346194385781617911850040288182816769927314639438070

  • 2021-12-04 18:41:48 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Z7aGJ uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4756378848466082966162436819138217573676854586805989815469005927579771006939
    A = 1888046013390538564372455422093538751369727818755861074863551634241158811405
    B = 3866218567827481086187779195703520292874125359805801302386276754689207707212
    n = 4756378848466082966162436819138217573587242105135807959932981025343216946467
    x = 565354072165222890911580410847937769475414731811856554848070515900203536658
    y = 2913242801082918178267634036109520707506634663306123428201996839642248057704

  • 2021-12-04 12:41:30 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kjjTy uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 13058086870457417391542607065029230049986161643513507692313271248321178784112
    B = 7911903604927538119830441824380587837659757769827982790266060241877405757297
    n = 115792089210356248762697446949407573530394316983182972484174842918307276812812
    x = 85232615309268815793758177514684133978282154796083058540226023740937583930163
    y = 23285833983385543524971471106151021201432740392885490188109825048356821612686

  • 2021-12-04 06:40:33 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_aVI8T uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104404842881516417146093285367214040477001269855252149107922790923003654989951
    A = 62147942103416398296424962508700360367411731872865761059222477494401731956683
    B = 53131126037256697925065196964443367583676726024352400871172859209845458379527
    n = 104404842881516417146093285367214040476779846905357255099171716073757942692468
    x = 31623786330611007481989813028143730504541117772916828474349590100059017454093
    y = 64403715589587566650059536431047763829467343572529720788690409405226540861146

  • 2021-12-04 00:47:58 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_2SAFE uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 44010017631360872498385982878377701432713757747022991199891643853308970528245
    B = 10504206212874063904976852774094249268502516277811735340559787618318836567119
    n = 115792089210356248762697446949407573529936089996372377953386906107055034831267
    x = 69238541098780570316242916622567921262677804263009133975603930669023522664083
    y = 105166041823494433632578990200881771996474902211449569505137181852364118531126

  • 2021-12-03 18:42:30 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_OR47z uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 18250767979558913530650271161787643834186302028943451998377904936703058396291
    A = 16743261213262698380601709451696398077788669740890071246697942843947092989941
    B = 1320751731240752429050728021435028895397303325382861777844969438350257390225
    n = 18250767979558913530650271161787643834254947615930687206044181523906105203111
    x = 13122848478407665430727138187088382113499761692859605754302227023852152264618
    y = 10154064510522060593329624431270590291039191229901367213829293545744820562950

  • 2021-12-03 12:48:22 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0VuI3 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 2944213562982152803951473242102151876871470492722721664531219379629695772577
    B = 63204289399064478766795023418396008419113815656946906325427867588553241010141
    n = 115792089210356248762697446949407573530608803821414590240441058391771367104412
    x = 103647372047194560978618521777458977879062833422566739905894067734752854414754
    y = 84088016953973516272381689419867552109401411136688653031813160105887850273846

  • 2021-12-03 06:44:52 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UkXuS uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40914575191686877964137603725859019809823297904542603926744971715985081353483
    A = 17415913206993915793391045519838803629295537210275345419271895264540022601434
    B = 33187468497688589659402608188785919301001529761757725651459936450850177910840
    n = 40914575191686877964137603725859019810172919312322495217133254972506052224684
    x = 5003825209319485402859259483586478178707662976358840669242751127510924070843
    y = 38196576854740177692020267968578099626255359376494657063175297907330956794896

  • 2021-12-03 00:40:45 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_6MTsC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 17835845876556820486102220224687061326749180248511794028353326768158920762504
    B = 111069806547871588724796147407315401610289688275643070579794805443254016872863
    n = 115792089210356248762697446949407573530064828155936270716265056535211595231423
    x = 95007333880203306086316534011661500683182231938305629365202073706817247077024
    y = 81717965365044081308430756940286541378474972129985035338486477274029880933910

  • 2021-12-02 18:54:13 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_HRWs8 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36887628683831879314177817794541094820102763778676938289434495598232498068213
    A = 31156394156664924634755552178838857799733711803153689101853473426917296949656
    B = 9920070378797691033092673254031040561003343830387676808187545493199761401879
    n = 36887628683831879314177817794541094819944682371741822328874361013461683967957
    x = 24621185864605640538887874038940004071186879214529664621406003072032581255082
    y = 21685243758858786733235355887261878783906588208604693417461960693657697928664

  • 2021-12-02 12:41:26 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_8dcdi uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 112705937103490879690578366898418099637523425569431951481891550552143023041284
    B = 91688448916974684549743450720879820986327311148675489190621489812574484779199
    n = 115792089210356248762697446949407573530504374804338157627876514094525249179932
    x = 3085654029270163442002665941672243157517456874288156229391481139766383938648
    y = 111269194873290126159830160804403233563609244736780777829792664917609020620848

  • 2021-12-02 06:44:38 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uVgiN uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 70327265398785819349669809360785877925870248962643045674210606152127027552479
    A = 5309819198605893068095320191582039843614320735662273166734870347310324649044
    B = 15709789719188099886565532256948437364236460581319224607905434839921636748505
    n = 70327265398785819349669809360785877925799920797469512400642197860824343092484
    x = 44818187093256943501879034407764728107241938287033587328060731486544813317966
    y = 31833263269868731802357969421584870060464237347729221395028773434622340758956

  • 2021-12-02 00:41:36 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Eixhj uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7095001357522146748990303764095789220366601848908662951069866685576222402624
    B = 59222827208900625543729800189246805153602436841958262661683970359066760678394
    n = 115792089210356248762697446949407573529638512348880227280014980163896670552023
    x = 115482279673410026787307999127708687068828619442720965803256353923263201869340
    y = 17180454793887025495690681716172193900944398450189295153497760634051450365540

  • 2021-12-01 18:43:20 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0oaNA uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 69986003391713149289737247378231482937149919992573039957447377214061756465369
    A = 25625994440212354065876454925671296182262421503401693495485480842289769364338
    B = 43987063111965816903932761186003252766565232193345365978998122449775628975584
    n = 69986003391713149289737247378231482937222606100963412595088088113560555065903
    x = 3765376547029346184588677409201490884047614437181562009651354566925759777106
    y = 27865858756785363087483636154184648963523105469644273966034745491828870526508

  • 2021-11-22 06:46:19 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Yb1aJ uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 19789536579371220447110397430938873638122965915508565373391037182671574208621
    A = 9916254938198935244708727410969570986665975890525586800597290417458516401608
    B = 9917229837327782291271451073835308474727116567509967695262284557908734175909
    n = 19789536579371220447110397430938873638151750016623589405915880039363320130347
    x = 13434456328003216971237231236803208282683861735472831752945646920840581152819
    y = 17526684123889857023754008429805808540872745769634994773110639716396492467756

  • 2021-11-22 00:42:51 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_axye9 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 75784703548099376435711930292714401512140662207752018695293754102474993248426
    B = 31584799211753850562116635466655595211767370963075823649626812535370575084633
    n = 115792089210356248762697446949407573530226160546405390099123897177667439300868
    x = 77697525583765665167679272554933474511098046830018768418307794629581379291035
    y = 5045506311321464017773437994476643029859662785780167538797187328632980630082

  • 2021-11-21 18:50:00 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TBm4t uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103358771400640565744239184856012464046969864852336582771917932389823721207027
    A = 7630358880139165142049458015465623892038346955211583482850776580114327286973
    B = 56288939433424882023031692251886551468029717393667542142050406272431686818531
    n = 103358771400640565744239184856012464047011499724788919374798722551138331822404
    x = 89187290162334745325197284489746862124703050444950041800275822496498178382115
    y = 20532013854254755273045299609501855676016489913836605317813431416702644428272

  • 2021-11-21 12:43:30 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_qZQaj uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 41122052613441876987116094168894463677702837772506546612472263312377790981093
    B = 39101999019445218012286818890824747468051559875868861921731605261205043987853
    n = 115792089210356248762697446949407573530360492499847514280402761517670913422507
    x = 35953225858637301709681284594713815074768704439540454647566803770164777424468
    y = 84817439660490579697249553870641407475955346507119106943268695554722285109602

  • 2021-11-21 06:40:46 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_mbkGW uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 75820970972309318825292424048418589731334725826514770644306296452728866992047
    A = 54207732445473707156031256102142058212702738689519717987157498004071007917456
    B = 10444935210658009277192926571511583898753127255625956330801931178934112411161
    n = 75820970972309318825292424048418589731683710731119951406771108189918566700587
    x = 9098420744234693759447878390321591854521165669503400295833899183501999066826
    y = 51180358483441073029801837984773612181035806300386380863973363245043635460284

  • 2021-11-21 00:40:51 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YrV8h uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 45362169901072226790913584123800689459414293277368363664277459050422232872329
    B = 43114515818493913795942539939084518710996932085104227785795988420989981345074
    n = 115792089210356248762697446949407573529601935389137582432485124884918464516772
    x = 63505863258216281741664097505406580421098416170171412808551470457467483925296
    y = 59906520720644250037773761371195204511061354849577611077466948705303202191902

  • 2021-11-20 18:41:11 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_H1IXT uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77907816177129186320450181661805464745789574671817479560065237744437305397807
    A = 30410600662281634215544363926263919893624229421765705871920777403877831087458
    B = 40067763140799654231897737274493161147098336093872839655773065214194729910636
    n = 77907816177129186320450181661805464745635025474779231108182347869882354212572
    x = 51897739692300973653944677369233109786223835542354839186796880916628371561112
    y = 28825080730969397362771242383217411790038269419895986553697700319913990848604

  • 2021-11-20 12:40:24 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_vQD0z uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 17891808657569707876678578996972757140847519940046798370314344434686453787153
    B = 74057061553058054775284828711780447940032090200455841792541641598814178825942
    n = 115792089210356248762697446949407573530291439306459265216506992407057997182303
    x = 108772726738268517480127096735761567617358121288710650046792585522652162845477
    y = 95293523712033591691800188718002566149097738736486885858615573076063474431250

  • 2021-11-20 06:40:04 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_mgbMv uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 42858676634928568937050369614638712681113533143150481402872974180082036939103
    A = 15229920168126514926819429418282886915253751469262181153859111505791736206459
    B = 38806692943759171668460673180890382630941981051640232778409857635069585099032
    n = 42858676634928568937050369614638712680855782666150000827085750892989529967539
    x = 3206968182437789753993719073392864126690923889531596898685202141299457817033
    y = 13981117931520688842848570489594541676763877443783785488141002062903565331656

  • 2021-11-20 00:40:07 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_i4uEs uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97367289800355911323166805071280021725648362947434807622630104684010579325712
    B = 114970677402653019483159956367596049029364447305553774976010149869012852407024
    n = 115792089210356248762697446949407573529607907511094381390279632601815224029476
    x = 32651390285635951765278260429707492147976808330954657817916271792919455666997
    y = 55905781247213871654438598596926033078940671750993621414224935051678744497678

  • 2021-11-19 18:43:03 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_foAk6 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 85682445540835062636888930917213422051667508538018060506287481732346533070907
    A = 40517555693186805788745980812647247279365339131301746241915088645459076541205
    B = 84821411651396380959516062857456324935214672927231757542813870470753639509481
    n = 85682445540835062636888930917213422051745098080225841121644374334224428925884
    x = 42099247657032713954492720322165497199056133254068582321841095667732507536932
    y = 28583390708721502464492832464850717768196713048000173720774839010623345896250

  • 2021-11-19 12:43:33 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_0XgYC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 92684581303087469044664011714022285816340151579680234993630779019887556542372
    B = 28260781888495558550681185317457182801555338230471790298203948991567534667486
    n = 115792089210356248762697446949407573529893446626793173864119680411182721431831
    x = 7466128579622968891120728638824730863881713922206490831449532830639577434827
    y = 83940003086961953728825340613089757981396687234405090490035140969025594070628

  • 2021-11-19 06:48:20 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_7X9E4 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35335939843433217719144454881195309104654264634471699153195622857139814276717
    A = 22944322086764196038596031950790308075673495061203219107634719630628119540836
    B = 14326500306531738408918462395662789333260815985633193450712214225358563275339
    n = 35335939843433217719144454881195309104807649492564207220722419222250895109937
    x = 30148527224545968446455302107958004666240021217534533407129453425548718341839
    y = 12248089413280061315493309080065566650017140459728758359368834317784481349976

  • 2021-11-19 00:41:03 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_HeU2R uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 92537267736829890620184049703983390461506307625287518496114179430018089022239
    B = 24615984272622483760280893406711587461323393805338219791197538985464276683074
    n = 115792089210356248762697446949407573529979486021381884307738392398816094751716
    x = 18509480165319995775032936406652369181269026346264109112780393402113339027169
    y = 87110959151623969157500232705101236784024913367630732240325199903322443228400

  • 2021-11-18 18:49:48 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_iaXWw uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 69810140927230861875434415347223859869508642286971600949081806234152064091903
    A = 12697262872174924037732614427316687775454607920575022747025986551073596405186
    B = 10483874302232493773160994782829962969005561089332336061520024428000635515970
    n = 69810140927230861875434415347223859869012701120958035830692118345696943951684
    x = 14104393137558086290783940027985873452318956799550582819472108807625868325822
    y = 34324412173728851141920993743509150953726748108475032896896384601848451369764

  • 2021-11-18 12:40:06 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_qI3Ow uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 87834552610353097669525283998688344980096874422645164570041176507731118925043
    B = 34770104930103330808253620607028605101901755694632737102437165826935906946537
    n = 115792089210356248762697446949407573529855870737299671667656207873926918246187
    x = 23328349322029245071035847338288256340626503723086375661490153881321137823005
    y = 105326559497125650124303072153249103587857079282182978791148953840578240197258

  • 2021-11-18 06:39:46 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Ny3dX uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 20219129901907097874824276786997431558604381024590794370351228384667954823229
    A = 15971283943175038083714031880496200611015844851940654688648177295231176662830
    B = 804021426746588977931135535909386455126957661831777996036520873183236200667
    n = 20219129901907097874824276786997431558619532153141275254017574440236409666073
    x = 4035744836440706458581365767585517799906254114067366548911699952472819279809
    y = 18633466937898018687907150339646063116398119650277106921009684400026057998852

  • 2021-11-18 00:43:42 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xIzie uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38212811425486216971805378389432904041238770784984845822292374199572877583402
    B = 112398191017537937280225769478159446713859132333201202754112947123262365544293
    n = 115792089210356248762697446949407573530456935406205111675243012406740673484236
    x = 104721625152331055374221358823375010531960853150972984735735486247445769074571
    y = 61408982020882670267737130375577330719603545014781108624064242773904185494592

  • 2021-11-17 18:40:23 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1LVYw uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 37217006663553931693694428316054633292092323248180247424713446905442821184259
    A = 19049034857487342625131315850716375723070074580698140616197502976983040802505
    B = 36876721916071549351601167281722193619119515825564140414168430299724760099344
    n = 37217006663553931693694428316054633292223239831552549609831838803468266020412
    x = 5413940521928229291062124185986930489937480824189993569008345177561222781144
    y = 25462890578698447771056398820297103122351481562054300801810778397492114793142

  • 2021-11-17 12:44:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_OGVBn uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43471161105838633203115047210413399624665470799656303403476679644915573288143
    B = 80282730703479624587428730864211148057476834818868013364509367264191891769062
    n = 115792089210356248762697446949407573530599127239056249240104234112558122828941
    x = 60078752155562807174787414468301684201474373269043809461342937332708752074008
    y = 57474990484322129293858563854198360055029315691492630266659392387713225829658

  • 2021-11-17 06:42:03 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_joqlU uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77023803573243653235995211110143690432865409853714359035411264844054999109819
    A = 3157539888736586643342539897588727960557491112948898358608289419636192839190
    B = 15807711890858972582223581996892868166992617544010128161752279279317451618922
    n = 77023803573243653235995211110143690433407578563958532103839418981227569490391
    x = 76092752763462101686953564559239848660064491957678714287244516300172315135303
    y = 72551939209516804966594854651457375577794012865815394788735443306443221007334

  • 2021-11-17 00:45:35 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Mtf1K uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 74990642755080398384466401585269385729969746714686774168588543391075049602652
    B = 12414857726149191775391599797142398984701321113065929909434196755482556526550
    n = 115792089210356248762697446949407573530175423524215185251659538653637043724756
    x = 94683643045340616305571257878832836051306795385566889100634510194049321342887
    y = 8166350113500384393281259090100051510390430343468024309376101469801587182424

  • 2021-11-16 18:41:57 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ehrrr uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63244680430601456108300849242536388041247091508067134453963160166586726559267
    A = 5991075415518435135645487788606670190308970059524874855477243968293411737705
    B = 26807067822025881993195949995087282363730200257624438951773269046931098381704
    n = 63244680430601456108300849242536388041184710077042475227572963550077960230908
    x = 6314936741277542522921843000559757397076254126725399022302364261953269532839
    y = 58560090540306289687989089854032409483705101372758397112281297768186908258340

  • 2021-11-16 12:42:46 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_V46Wj uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 41573086635522613385030128311624293393246807447809620944781672022077558220932
    B = 30971277543621453368781317954839770320774234493455536499289118216047674706394
    n = 115792089210356248762697446949407573530116639591461638327480573762044355540197
    x = 99512382901424272354226778069455122137095616400769461817082558142224787801317
    y = 3726892525293564096204446021206350054819949098786824067190995040692681844118

  • 2021-11-16 06:47:42 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6P26R uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 90235529902664873849778118465062830018045837503165157681725446631758180020807
    A = 89361633544516045779997650955728977147916893689889326038667239644445288654038
    B = 69055505825637131023299242888299516864795912994932047899314757989318375404469
    n = 90235529902664873849778118465062830018069777932108564255560518934569544815653
    x = 15145480937189532542319217395833065379750954421190809629706518739758840022568
    y = 20340577733397235222748367731284261233339739341233400269919517286820595495514

  • 2021-11-16 00:45:03 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sJvX5 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80722132593311396060649431662609196172700973249727064994294580246272608150350
    B = 47045757309604615493596068133359021420832683283623663043219838909888694083147
    n = 115792089210356248762697446949407573529488482169553413399088240035710928361612
    x = 113140073592314497575742959117516313183899824515807148148505077518311117881602
    y = 17314895478636347221986200817141072832536200016467237875762789310973156201674

  • 2021-11-15 18:51:53 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5n1Dn uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 50419000789909532278950100809945942807923059205628595175256784147638241429847
    A = 14781863526120503898680439422969094210344950146115755530682345699356016851171
    B = 33393058275986890663975859524637949566646599811993184138445595501749435310435
    n = 50419000789909532278950100809945942808115673613031215653901345651708085000924
    x = 31515587960936854644550142101673723038479122532224930374005586776646356200032
    y = 13428021267410386241473846008117404865177875046247399068976170682968686936580

  • 2021-11-15 12:40:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_SMlJg uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69824656913259161228377876125729731443996047793985619038069808617607961116160
    B = 44157171419218153769034907347344059938565849707557996848679318643846370400931
    n = 115792089210356248762697446949407573530566591472820598058870294358198793490161
    x = 42368959945150757341326623067765357578002406710821030561644068695896349568641
    y = 46083113726866342340994877759550878219297365626105642850290355640367216499976

  • 2021-11-15 06:45:41 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ZNs7R uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 23647551875233331196529998930740079783843659335394078285607265885996644985733
    A = 2834933229267932826030526975084181240218577502477359860235611674507275230087
    B = 23193149634777486243027762296832598138384377570428469340482447512965875776772
    n = 23647551875233331196529998930740079783961973180076687014766305031341604392807
    x = 17754982699968354294161952527062510946910855992030083517007602912261532209453
    y = 17507481318922039387700098842016037115641352884058512156871241590679180772444

  • 2021-11-15 00:43:10 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LpJiF uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 25413217443943057433051264405784691086457734340698810557466611305017551974744
    B = 21396103607881972262709714596000070397610899538070393347238736411289578768405
    n = 115792089210356248762697446949407573530413299296765368215194684940375798239236
    x = 86227337461413611997344101154857002546911632693420312385351508024933026060802
    y = 74176349934995564363014077382742847934568216950102300439210899752295393623074

  • 2021-11-14 18:43:14 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oPl9T uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40446173038459013057191429288675588959323004562518598741204910129384380930607
    A = 32548262275927373731161191246192731589361593121532572153235315586247301588272
    B = 40182349483833523996269639310119206211462757253310569827472544781568485963224
    n = 40446173038459013057191429288675588959100650430731376672585872221330264128148
    x = 12184910639576704821328814862861571438300241845470683311763478139731732256145
    y = 1620819261254829368993227927502650946112724659433299588122008589673836594122

  • 2021-11-14 12:42:25 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_9XBMf uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85436949116483080485066979705110939916576279915191401341594082860322985610765
    B = 38152141429672392098735387895345839138981248291181224993404865028322551518488
    n = 115792089210356248762697446949407573530073605226941461824125405030496292266931
    x = 72550829052071764976803448902175272045641520576582875644926872204380046220060
    y = 64398238196503665064661957630789959618750158002049136255765659107721711284826

  • 2021-11-14 06:40:06 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_skyKd uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 12632759111068077282703363611656188703491497588500942257413603804777801933683
    A = 7964437919225782968318043007840908964112255609605320676605109880720386438394
    B = 506473051893463571580951362184881722783305528210174003466003525971652715007
    n = 12632759111068077282703363611656188703315912038451201367984911250823941902617
    x = 12073548247761633961323336345173146463072037488381732151184309951304376935662
    y = 11824001438128648872674304062832213000380845515888093076722628943324328448854

  • 2021-11-13 22:41:28 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_q2TU8 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64491195769094660544984707040587971294706536596834927489349171454678080128403
    A = 26350508154950087362473020153063211554345174998368533820496660341326912632070
    B = 63029745424098520618690204451878231754135710344322324322136424006134741173186
    n = 64491195769094660544984707040587971294589412065669438472869539086068075294381
    x = 17803110508925725768094975965581307275180708216050323599783666463641622844649
    y = 52494950326267677445693071934526402924569367936479701975493659579736381764362

  • 2021-11-12 22:40:19 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_DUdVX uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 112488832556227136178069965133145044443155600958609827423793689524837256562303
    A = 63775459875798962327421853813506214926253422881150998256898327626645684545566
    B = 33845012324352521116941129881709885872272019875775431163412185321205552246617
    n = 112488832556227136178069965133145044442616683493427944327627357163192978997579
    x = 24712262154571066126320731781452537338382107006488301561761298552992584077714
    y = 46648463654062436636639112329728717228897446918483691150294466794303544774584

  • 2021-11-12 16:43:17 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_tEHW0 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 57530790743148139933351762908412295277088799169318570892815234489836260194535
    B = 89956435124311885709405729487341377588824245223435261629392067205329994724790
    n = 115792089210356248762697446949407573530110026685633628753744100787074196092868
    x = 90246397976325458517439932452343424967050394792361068581190871897354292564560
    y = 17283583394681931228950833421902557836098751130152106254716837040425872355402

  • 2021-11-12 10:40:00 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_3yfNo uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63298245599359246023241396170697135853741044673531090620303569094730511749767
    A = 49328025933868833771268336572805358789366981112093223555526201881469568146826
    B = 36493025585972277348025350602058276474493842533785777994240110209253674274483
    n = 63298245599359246023241396170697135853635800067889208505081055411210042703188
    x = 41409966045638077938815368697258574567611965152598426582728695895415008426462
    y = 27904402441178365758858578257945432547907693899631021898432881161179790720098

  • 2021-11-12 04:42:11 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_RiEuY uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59294811001692218028266045936309356705865025474793413257745711100823141161555
    B = 112785298673957563711053306130495895593451126785577118269231209783156870583735
    n = 115792089210356248762697446949407573530591230047657017062793290867848984323143
    x = 47502619266823276692593196997098791802790813851129565054907021738613637103434
    y = 107705064412994910292058757022928661372270487702420882059869842042709169460776

  • 2021-11-11 22:41:27 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1QO7L uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 87743493189811545098079330794255728073951335662198691216491039244528315637683
    A = 19011821473678568771712315133522857153783303193201719147730687380220270617457
    B = 15807832977824838641093014329771323540272117531559914925839791846618113027834
    n = 87743493189811545098079330794255728073896124517796787037118095089021742647639
    x = 85671149557456265710694072703251912028360898139610381851271090434868697366957
    y = 43722364781080833001955700309543493667368791901478259260017198261387142995732

  • 2021-11-08 10:45:37 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5O5SW uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43944085925464895921192639531172380383299437897051404576526834004089334865992
    B = 11478920097038086736888333915989688595461646190392510648721394680748190716019
    n = 115792089210356248762697446949407573530454084351028560826009324392915928965172
    x = 114016779716648940952388964460556113913197132760772037690719776258040709894972
    y = 62868913713539886667880129186219030867097003746718732362209714072012435987966

  • 2021-11-08 04:46:42 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lfXPV uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6506113693798075049809117475957255729229509149651149124182467114749926609487
    A = 5522568179878412961839126663706537460743963944178411237787720643250184659567
    B = 5837339920122739934919339820509033050491365452283658837461165092290659882123
    n = 6506113693798075049809117475957255729331821615462751208907710322064641036108
    x = 2098882436057983887866942096321743068975550576178889175954387322101533460811
    y = 930558521796468333136580425450314469538774345999556443857966544595221238938

  • 2021-11-07 22:43:08 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_1UTr0 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43239043385195906939050439641774312110985254865774823255794018792002262857632
    B = 35236221465599574977324111939009925943961367559257091804295808080122838120494
    n = 115792089210356248762697446949407573529961898550392648898543773832865537161843
    x = 31029924682419876275981221482701452232054824622179078981408623011279028001268
    y = 17386366813863015427855561863953266232783927509899962996428444422254471222190

  • 2021-11-07 16:42:35 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_1xeNa uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84316247886211553069336565625397679513879802585418180750433557901550403026397
    A = 56386974208032914691486788067497542563857499579296123432230730307369213561488
    B = 59712863181062253450461367867842828295380214401583276579668251917124097565050
    n = 84316247886211553069336565625397679514198806241421322253077185308425635688629
    x = 73364083185988656377472857671139124953027269570672227461180950202190207250888
    y = 50697542048433885396792022639898904808287333502977982909792711907360809018136

  • 2021-11-07 10:41:01 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_rcgig uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111049151377942794656055658094833975098198650301864534391381266056200834232842
    B = 115115021939479342814802868100866869295207095364293030076874106440594751468583
    n = 115792089210356248762697446949407573530687143683183458438653743436053787574836
    x = 75623863951741512497939932946430910756703039668748262115547199260511464514746
    y = 48852193554187729891410730332656539197572811098972676810084009927987530604650

  • 2021-11-07 04:46:03 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5Hhej uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 52822499908265345460621153895091567384161377959740125822297261663588332710103
    A = 48001151232994062222485518620092419529620130371666134717074625869795611909251
    B = 4039741027902456616156034728714951129974504918228752436902234618775901346410
    n = 52822499908265345460621153895091567384244805991380496577336418875048033064124
    x = 29394925549236160186995315934692127474403586312804319504617129568842160067839
    y = 8272222862757903480222370745043972097579535650403482903422846220277451017776

  • 2021-11-06 22:43:09 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_kYuED uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 60551536062023373388024065923963114534252608741329700578390955660813531627808
    B = 26369054617343883383735749600737908737929519119802524179963806062597017903970
    n = 115792089210356248762697446949407573530676630219495558301870097722997263361653
    x = 60509571015023287877589393785960106277588332746536102443352931738908288722982
    y = 13034530062331306117942792984121256961807223583128181542670346168331642141064

  • 2021-11-06 16:46:31 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Jkjgl uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 50557575888624363076074186879629087025083039694168367022191962610721837219777
    A = 27564759454253246626899865463128384273825886502334881899213453580438998454959
    B = 28272540178479257080599360108664480850484261575039607467080729039884075901840
    n = 50557575888624363076074186879629087024827300790511478534530305766139541881963
    x = 14545875976632126848070900234593336517235120155860866172461024824751784031978
    y = 4177390310105759013914039353859049075091491560318547418750640367413588042670

  • 2021-11-06 10:46:31 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wyCeh uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 54947378112371709762537312743427812665684909301120253661520257870635035644556
    B = 60475370554825197158907319385990071340297181163756992041844416405943830594216
    n = 115792089210356248762697446949407573530464295605975536777644505876222244660228
    x = 433302374305439233270563237877891617545236673036479381189686202978974424929
    y = 10000693685478548766058931863777994780586702490523664812129671601501262337840

  • 2021-11-06 04:40:06 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_aWs0m uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31705897079002909290160808778514035568294040891012217074378504640351980461507
    A = 13178156896165063369350576892118467001646708916026517840583462812346512584564
    B = 15026240101268931707749068070179269526796063469432599071482490561651155293693
    n = 31705897079002909290160808778514035568284487065426640097231074153802233831772
    x = 837029325810083732878368424143144925134838941711171650467591337411181797362
    y = 30909425877620684633856097823511533587795223259474598935126379636723112540934

  • 2021-11-05 22:54:50 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_28eAV uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 66340035464409306284287061840424376715027635281214528025178811246377219061005
    B = 3763953569982414031619604947323403532667374902167313831541165099102179029108
    n = 115792089210356248762697446949407573530115313546799019767196473001495065073061
    x = 71241610211002568156276737023684133375209175872724932309197306425800686002747
    y = 72178823229239765718617743831772610010184912070675494544852309095642695401528

  • 2021-11-05 16:43:50 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2iFxL uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 3007122377800812550874354556842014203561842311118972522893117476125814975067
    A = 1159007348966645155160469342277283515765812191997818619268711983539734641718
    B = 1721482787752221692297905698006023153534416406872522259688960153043684606099
    n = 3007122377800812550874354556842014203555031878250189758679467968343065358029
    x = 2131809677298359516222920120754826527218193272219362621063301426262031611612
    y = 1153787681004576244313129491995721109481291630931976141264328771022754450740

  • 2021-11-05 10:43:15 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Xj2DQ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37834146721273125692224846811893542594439271819672492196697234388450929888154
    B = 6319763115050204838646000260821247711533956408057636436304455654328396730431
    n = 115792089210356248762697446949407573530471858845176009720330830397846430414396
    x = 42087055264045755915761704590499943470008727373950724912517911658362008778439
    y = 42995517288434451242930065978185612904376415940438116059452040994285516612136

  • 2021-11-05 04:42:02 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ovCEs uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100533960148997042122412255343090853501530223872136330226596339916085604020503
    A = 22797057851107601544549576581819646198925548538065669946775311141579405651125
    B = 89967638825864600590902847080169893473003818286181101003256940729225183142066
    n = 100533960148997042122412255343090853501358440788984870372687505288201056111124
    x = 66915223027356777669394826657857913627486054816050788068045369165370634141185
    y = 77971230848349152912675121241652625260373976494931278143806627102178218253852

  • 2021-11-04 22:45:50 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_fzRS6 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97134549733329678423505029808652801667511789631041190285811441986776771897713
    B = 44985235970301132439561688353371082487922482558189692471139104349581866238094
    n = 115792089210356248762697446949407573530180189449471796797193006646007576613827
    x = 39170615341252402487887980431393499868777703428503249129409812591963046314206
    y = 78486003042604370558744397923628516261638251057406116633167149774622432454018

  • 2021-11-04 16:46:13 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ii3AQ uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80621632769634982039675284744922047350944945335973060770607129139850957092099
    A = 76514274383352835969494277399291280975239369839720009725672759207625086024659
    B = 34010277175828384867068610537850671848349616299510014904685357592624277496631
    n = 80621632769634982039675284744922047351194256828827100144543057120060558984967
    x = 80351538153227495528017004485737159705950053341791501392195245550438115396364
    y = 16892960894551863993404956965675455301818209309398096097089086930792202224732

  • 2021-09-08 04:41:12 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_GlBPE uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 94183238372515066591894097454159819564560501261595024011464388878755429857439
    B = 6035830712264930366503883886467237807606087585862045632201763676404577007038
    n = 115792089210356248762697446949407573530088154386890006857959332565652670154367
    x = 76090918250890964138831037364203937771771015078892934529981126292395349796346
    y = 111631561489926286718099921071017501393561238920609887387985337763317445655710

  • 2021-09-07 22:43:07 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_gvlqp uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 78952864510878819517239565450351186792178456569435283600328946876771629872107
    A = 40685453237553209219334159022774501756803275426857069835187527351605842279938
    B = 73314415231577320180645690821832208159201876298991824078436941786782456367600
    n = 78952864510878819517239565450351186791937389038073586576264759823180414769809
    x = 60079286658267130696719172375436573049956084896588540055657936703248901100183
    y = 49273653942520047930282942220638522332281668907020105157081762565053676064132

  • 2021-09-07 16:41:29 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vJcXQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20455629353000825606357498102513842793886196134798085397754976649741105268919
    B = 20801947669775568212134185577762378360506751671945422369856132278350817206862
    n = 115792089210356248762697446949407573530664032929385118877875823895909416108612
    x = 97057319437718416244300703822425348913171617673970183621503095430377077266880
    y = 57269795587469150614959424693211337676465923214230034760750618845835905531820

  • 2021-09-07 10:43:21 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kPvdT uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 49144701366659477854716109159601107641807437074731599016303247259334881392247
    A = 46445352990585816240913845249274082387432356883284192037631761743938355282082
    B = 25102364258811805678513788486598350765204560602315410211367928678650078866190
    n = 49144701366659477854716109159601107641681702874859233414449579111745955945828
    x = 32121352974594319887170518572854299712818183911881390165637161042064164489495
    y = 9409839571660689500917812025504397836786524601112032862047863287874187773924

  • 2021-09-07 04:40:43 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3eEKd uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29136211585909413039205397086904748717778021796021594049067754348256151778996
    B = 78824643533189030577986521672170422915175075523986667958523373240363355638527
    n = 115792089210356248762697446949407573530369758837358985328470563830094854018543
    x = 2555028952120823244611827974361609428798006721257556631830872257469851863961
    y = 41509615529704001269875534119150896652042054797182983132911242295267309770584

  • 2021-09-06 22:52:40 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_1W5GN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1404871607326635322641772465677443644269157086536190885668583557300140814231
    A = 560181930544184167610438457708131795160028639476884986333086227609854090385
    B = 380448321975765941905062492871278917657536167120552642190071566205388547312
    n = 1404871607326635322641772465677443644245428974152072478495321637897602237111
    x = 1301347256478701790777256780625159307068377642504068860298835965399806050437
    y = 345147887892271343957862378896609987870071904260391143502522438700128828738

  • 2021-09-06 16:40:15 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_GOX6r uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111809252422965597049252742538623360487388856518734549552055330121046394131338
    B = 40122690055628587625375885543645945171157996836585142435166860362033917973459
    n = 115792089210356248762697446949407573529982067368992552740384964058577549605668
    x = 22846328858380567809537311431124085868252600902296020858260590140907506272659
    y = 15015684227723217842466624543052425451053621896810904557819486944904007336362

  • 2021-09-06 10:40:38 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Fq76W uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80996645112339795816869403956197132269707706316561566145414911284506607500051
    A = 52670124442890229099393016739150254232102893678873843677379477079192592137727
    B = 54401052608809950220821989498907968001689980939876609708409162626037348674148
    n = 80996645112339795816869403956197132270150578985088802771340439739830256852812
    x = 38962664166538686883322265837925761799098358289423064170766562742578114654519
    y = 17109308330657708442014192280718535690111842522956628324954511908851130057218

  • 2021-09-06 04:41:49 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_L4l3t uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59044138874428720303960904493367006869794527684733194029424143207033684901913
    B = 11395628828813964164791116627992592138249854645874416971799811027153570973612
    n = 115792089210356248762697446949407573529901152063080774686257446662713379620237
    x = 38686183594569432826360434156523184324089776804203732811147653231193050604270
    y = 110829726020154198944747428945477247153480983162943028220581741106913574758330

  • 2021-09-05 22:43:02 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_unHw1 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1519810144360852075575591468442971843822075437119917366843063716681114307499
    A = 427919446446344554363314991599771236803691096821856522757124816734380707463
    B = 754785475132866663551323450402939048204106104391571305653272484971746647166
    n = 1519810144360852075575591468442971843843888903415322343446322132033637954769
    x = 942094057848185729006946995680319811345350221417243157190723772758700837655
    y = 860399831173328619643098016473204648658499190461950864152333807582283321696

  • 2021-09-05 16:44:25 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_E1J7u uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 63897346499586379451493830517907220058077675330198451904140935972408297594400
    B = 95309018174480393480171852759225511475810476535519090374401813565438824089399
    n = 115792089210356248762697446949407573529982072324339616176269209308077753595932
    x = 8717752196207192348082227766834442246103583408529736116096442725031845208447
    y = 43061298529108126211298367829997720664614704913136770024057311128018687539804

  • 2021-09-05 10:40:40 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sA58u uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 37225085311634349525702668755418051553453975603612498861868637113533596249099
    A = 34280654219578896024364549614283304930895764764294435294097206085980260013800
    B = 35412393549564859787901022956697314870116285264297210491834730062740548974502
    n = 37225085311634349525702668755418051553609038554551579515704925500011600738476
    x = 16319594746460476572684592434066625508643855428859068405112497086601072331646
    y = 23233754142131356885176686525116812162641972338116904213540058769642743833184

  • 2021-09-05 04:43:14 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fDLQp uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83956200885898591267364876200547008368163711840214441502978825546102594847840
    B = 96372595337519623180432237486943980962034744299172555119789737101953493551609
    n = 115792089210356248762697446949407573529895928692049386935582584344251265876287
    x = 35648988570523146132239500959288470787697323531228665990674996464380875062976
    y = 81425502723464327161351370340357483525843712569989601405639398263628505569576

  • 2021-09-04 22:45:12 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ctbFY uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77527377951212837942741884448012652595203785028330935884319374831040099182331
    A = 12366642514961544086314517973742142213405316119246921866071383882848309951225
    B = 69621340689967576878736077838898180809347226445373764121127856216416483811113
    n = 77527377951212837942741884448012652595432970220921005586359617007095507288693
    x = 18005738446399137975610329796092259033846451432215937757828743783761608999658
    y = 58381815289755220691301223990634099151821171688387147184351309795567871691830

  • 2021-09-04 16:51:24 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2TK11 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51619858782220716409712956994237801729784344734486891051392733983547228488971
    B = 37098470826875222596146566707513860618457210829570864368520366239581741547690
    n = 115792089210356248762697446949407573529783989305898817204349332911077718336628
    x = 50306972813131599353783555755265291448168620556079632996899344257573220789502
    y = 76897589783133397354206491101316805730294682363931817303888005354023337489928

  • 2021-09-04 10:44:09 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ksrFu uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9588652526692536136899228919878619301503534260010719924139919724951679251539
    A = 6266603141456344872476783206570139367407256630506743171632768714874250342644
    B = 3175848215393186548022810958205467901697387557390209452728530348413542423171
    n = 9588652526692536136899228919878619301473354874374318220375046957765924141956
    x = 1446995733005476723261364430121646216384763075158591225525950806070497525237
    y = 1668453463843326314864541162477385644437547516146722057665797467688533549498

  • 2021-09-04 04:43:18 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_pPrzS uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 13149128510716363080202200910788178422463580840929607457147492294770655688267
    B = 41945559414443501315629608883480116915526380173599968518311089868827253549275
    n = 115792089210356248762697446949407573530555467594106203564502787691162863699793
    x = 106642450600321003595919514242784552853016914984042395165132896154169092797525
    y = 98793835925121478099271585887210892554081699304587464242807965415831895344366

  • 2021-09-03 22:44:58 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HE5Kg uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 23251315764197138428462621804343756534998310022482537237939511104921998355689
    A = 22670198653896686228401222755047894704508492293497966222315687617015471117763
    B = 13885950331005833921582398947014694470228252693712634270624205223314580981165
    n = 23251315764197138428462621804343756535137176348058451198306642491913152585981
    x = 9889201114914520214482148806765186486011755358878748716171297171045198172952
    y = 4546132801257530491900755823662558328596813690258874948839460449796505667668

  • 2021-09-03 16:41:53 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uOtGI uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52184909945908795199017687284626231287138773847682029521578798534391362415657
    B = 107078373381429177942199006910540435172841445267608940124048359533596769583525
    n = 115792089210356248762697446949407573530359878017593685742896143722620036640076
    x = 49986878853274914913151238686780036640308968852685619779059370416950867448400
    y = 60847782465566949067656737958623558033016164199176423392426054581406400477036

  • 2021-09-03 10:40:23 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oeWJY uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 74206037611835415339907582500659849498122053290299339211449165782974517342991
    A = 15868037435810611384668358444765694536922460389058874335183627237789283816334
    B = 19034458577115024978671807775344925426959464902466865006405019768433729008017
    n = 74206037611835415339907582500659849498280181461395540878549493046758653147892
    x = 13220964701927471769244737968740005963665102724674607617555799527675861053987
    y = 66844110543181899598938695817359936534797162953760748830363610069338131929318

  • 2021-09-03 04:43:03 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_5elkQ uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81587874475858967662376862342133854734900652779633765415144689273069277021170
    B = 75818429091286166849333528351568774675013293170535915183378019793075682108838
    n = 115792089210356248762697446949407573530654645898241850829221496131455275976321
    x = 27267629106277847787785022820438418671240741470837664715431207283083614133478
    y = 18701482189787607791026947190257952572595097647633341321256631667622357862318

  • 2021-09-02 22:50:50 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_duHhA uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28317889414692292336618684540869182679572230775309010560697220959087622257841
    A = 10693047898186730395586623378185253169147851729457881302076029688645520171267
    B = 20035253876582397001955573582397952019446358754998332925343577883994350276427
    n = 28317889414692292336618684540869182679520151720315711012852041161033217851107
    x = 5072232122439747101753233921149900373698562586337860553295033320219015412094
    y = 13105922089263347134637959787143783122740820073776655209577928001619679167998

  • 2021-09-02 16:42:27 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Cnf6X uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20659069963354829292946732848214905232036536071138517796686357311296578722336
    B = 32449982011383917573786494347716465067504371195998549372890788403298815827658
    n = 115792089210356248762697446949407573530519220782584860894926955101375752762876
    x = 87113920373379425623555848263960864547281904481945422306714188663781088151441
    y = 40225351506603092775976531911545952708966930723355307269457106969947843483186

  • 2021-09-02 10:43:02 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_bUw5i uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51392005836829420085347634059812686866715448746658578409454708168519197241519
    A = 28728324211010256521895481988078685542155735858378166762101890182763595457822
    B = 8737773038903034515572713979747881640993588669297671214993719935785234324668
    n = 51392005836829420085347634059812686866590153479285150569906850577075895575212
    x = 26152937398408764434992770365152772590098067001648261149627256593984145511897
    y = 11003015516199464773898167201016973014465034045406450146212582859682437388238

  • 2021-09-02 04:41:26 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_JLplW uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61512993439479893161629295453667339934527195272069257222823276508618914739293
    B = 80165278569903160304583580893812841638774817753514462178271158777194799231935
    n = 115792089210356248762697446949407573530515586212151957100400229768147170454581
    x = 84353844120887222823633163008505323274666332362576467395941680673681304858364
    y = 98516513656163444005960042800305197871580137373950039942888533968803888357968

  • 2021-09-01 22:39:35 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tSgq9 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 3752793872334085394790139886700725444720111839989250817595935364504385807783
    A = 3069949732069747443158834172521423964034427387089205137753661559865618453333
    B = 1390156051955631712240410766624601465645975312895011695290606428895416298874
    n = 3752793872334085394790139886700725444786293099728936005565652751735114805431
    x = 1287563325420300523867993768015292119574960761313548805344492828029741669520
    y = 937883053917304944689014983073910478281107740615123190042869070174766097192

  • 2021-09-01 16:40:37 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VRExS uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80936098716605824174674504477851717082520062440140732916829258097755493980490
    B = 32883094498858381475155417375473577169014660700787631023194039313741303110139
    n = 115792089210356248762697446949407573530136080403230525940711663357342605504692
    x = 111606974935391254865295147797306978974754167776331498344531780123058485100515
    y = 30901098612893586071105556776525170094578829914808771176472573495650514444864

  • 2021-09-01 10:43:04 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uacVL uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8834981860759800573262412093956483953715806739408283633734396804044202852651
    A = 1434840270437326399537583555816068207887354341419414322190517363943784147001
    B = 2596533125401473863392771833205539342760913712899411604723384841156214106462
    n = 8834981860759800573262412093956483953809958772867020116879581974773557711628
    x = 8103738740400259586060594062799348727671328049801884093209484483858422233507
    y = 7331647038079958986284328921588404973717959336756597160709718742809110689450

  • 2021-09-01 04:40:31 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_7aCKX uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 63771270921979114127576053197182540172941494071001060691284071182777654057172
    B = 30402842591795323258749445896748353871201136237569718295168356748046121534334
    n = 115792089210356248762697446949407573530657514506103153442141887964302555407713
    x = 71015896326445238691626041807268873201892623541199072757582829323586107309125
    y = 102417007112853850820659431368989598139993221898300921514069089171718605775970

  • 2021-08-31 22:46:05 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_K9yv3 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 82401010623086973744121004347698844344016814852954807373090303338630527571921
    A = 48124493473093914066202296172184483383258740817352564173300514659508773257148
    B = 37723072061183065350846831999790178534957217446525067657879335609648770106255
    n = 82401010623086973744121004347698844344160491059318489702998406927359189953713
    x = 14111619317658959598434656423151946117309934792906999058633279740726245797703
    y = 69316792612494711838801597330459806702670008152314088945919984156331432219190

  • 2021-08-31 16:44:02 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_l6RPs uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 41404361046199839984570976150267073014198147449096058745661504088658942448837
    B = 10988154377396951679569654284876879625655896476021418129302312309329909465029
    n = 115792089210356248762697446949407573530138028500996152302672925557849749177716
    x = 102737152988837686509189512499724417823272212145781049769617968662520549925548
    y = 92457700422470317836922650040223611503801357455408530645562529662908770084092

  • 2021-08-31 10:54:47 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Xcfsh uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80328510045394863905689288840493763058769219296021810704682730038248029524147
    A = 35019493199112016997967430121397846327901937267401183124578392875066181422595
    B = 73638672581535111098758650766639549496311655638157219259407898384100775939907
    n = 80328510045394863905689288840493763058389417973814776580277523715761538314508
    x = 16728570499199988944946409436586818120523722338238559356040182425715839747657
    y = 54812227488580904807227860590237904550777017307203739586765640085949639776500

  • 2021-08-31 04:45:11 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_exGgI uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42918651511369034044542319801604500643593834817104632313801253092552678640411
    B = 105103382486395985623961084028073655560299065275029940728790519846585456655305
    n = 115792089210356248762697446949407573529557896510578608036174503687242834094497
    x = 195494593469010469737356887139305620372357363315427191881982616792205280846
    y = 780901925965449329782783617066289769177387413975439587284400945360001253822

  • 2021-08-30 22:42:01 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_drJRS uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 21562251506448157288601290409311148228022304455146158309164469935470807095579
    A = 3062870942290094931384136970027441884599862935473149571703610360665766188828
    B = 18028716213713163709795615432097960001797543932411887978101410795010091918366
    n = 21562251506448157288601290409311148228052653763103278926569308444906105425303
    x = 1415700726909134290106595350105713787721843882173110932977193191194784420913
    y = 12052463663570390789347951585655213839512261090169261849755272653388034554334

  • 2021-08-30 16:47:04 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uqUi6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7484249759941478984245509710295548974366161634083485136729654261693202700659
    B = 5351128315168352119350274627447428777906545510730811165390063177147454314068
    n = 115792089210356248762697446949407573530284275555139482435415174666338892989628
    x = 31627072865681029670168565881984773420106956238321804406814705346449930013440
    y = 43946996718382800400884975324304050954163405310017156995993430175586741977518

  • 2021-08-30 10:40:11 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_6QKLr uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 85422017448172274929989535091663634073709401035615282507951106457281465252319
    A = 71862710960672881225597932081791860482157466072513422571794698508947629320978
    B = 18665068916481203562895367879326857596090941445625287547163862836107717782701
    n = 85422017448172274929989535091663634074055799672621510301552240524228771656644
    x = 4418810420761523735986916094117191326598211673554172269946188461008783393884
    y = 31883375164028950094176552228107843868498979321153644953278834638112877456992

  • 2021-08-30 04:46:05 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MoS7Z uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29067990169442502029326151603010732452195100531863125507265296603092774462707
    B = 26381972407901835018073711570577674305855536485187954435447792796406593853824
    n = 115792089210356248762697446949407573529744087568844612042845123814601386857611
    x = 41439256478811570984164561260208271527930777380499591120669768428796241697251
    y = 42093237788671998660920020255883579071168833224063271673019433538865357988510

  • 2021-08-29 22:45:15 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MoseB uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48272000294317830381821597088340231869414102048882487940258710717509601632799
    A = 22661177931871412758608163109654330384087078551578655191116973337295825429618
    B = 20693966167089464757058637007296449124944928683389086012340212996522671499281
    n = 48272000294317830381821597088340231869362963522194560955338658407599796645623
    x = 20869408486959130503559248252852024491462106850419888827643262809375260250603
    y = 24195920703001747286636334625349214028640916515190417704233896093856594482864

  • 2021-08-29 16:44:30 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_v8zGC uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 33059300027599128601906205303882094466192394851805340486286520211060085157977
    B = 2695230861396204954697204739595261807923647804577122934786506256735873562257
    n = 115792089210356248762697446949407573530595577564081716609972073775665010232412
    x = 31954826643062678453965605605577882376093244056954899503832792180848346675051
    y = 61455033137971910729375408352390244501473598565971444557083976376291935890910

  • 2021-08-29 10:49:48 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mRTwU uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91112351163393498353096286604940148759749635635293817329761138504949770574987
    A = 25066760429123500125750314517594107033975186108919769116299072233501377059276
    B = 35912818487996544583366105792350335688433602309638528115492318314110275842490
    n = 91112351163393498353096286604940148759859734246656457411739926421008481086188
    x = 35599566031087495653197092164644912527783024116882232672085045120909588539171
    y = 62676423314745034645507854306710722824215901238732853588232592719545363206306

  • 2021-08-29 04:40:31 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_hQv4G uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58819992363697915712561410073228807870532957901516414421176377544501576318569
    B = 71013370975384348645067094602570020746208719200564124259612224640401772408271
    n = 115792089210356248762697446949407573530555127202417880961911906779181658816667
    x = 109128691597314279571097829583623544367152428357422399329290222307002654575380
    y = 6892262937527007588673646531433560009697029955760886462283077992145810730278

  • 2021-08-28 22:42:30 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1k092 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 96927948347606020337521145533781994019137289022537949459524064128069574374851
    A = 81661908016260767785080823632037921841137278943923478085881202357655763762740
    B = 79934385077144793203266794819877662369744522808367956362696064244615349572883
    n = 96927948347606020337521145533781994019173151115080783032123445124189978884277
    x = 7640200555090777284858974484724273769992539672166341893867612088747058818865
    y = 2938587021662491798664756877741221704872036641277908453283073946284258122780

  • 2021-08-28 16:43:44 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Qu3OV uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 26222983461654320326952732378747072616716801946621036946848220926299702778188
    B = 75657099962162698057479091431971274432850246650251993035860526331056876015912
    n = 115792089210356248762697446949407573530428106113531171994927008137766652368276
    x = 25013521455770635378889401442565878947648486255814688195304463964043024555689
    y = 40501911903089708030451290776697520821642080758616956469303599432402463610270

  • 2021-08-28 10:42:35 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DKIrW uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45456462484380282234576653450621538059089697800885239382739937878449701189959
    A = 2207618485381722083643316188077188825641211115888609090334124836363671894679
    B = 37352365029572583324843781917615128294742416625938638590530449438969330188676
    n = 45456462484380282234576653450621538059447875786930606855546231066964503054724
    x = 36681572178125512274779689593349211532208301295096834829724214443109276153830
    y = 40005140304594846146201211293355969131613066612270734995459970754286612926604

  • 2021-08-28 04:41:40 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_9LPTg uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69885629431911140243371978924033633758300445001270956847695955167625483505692
    B = 94071505942511259783916898098471809807773285515399723056170688109148429556707
    n = 115792089210356248762697446949407573530024663477520454055817625799578830509323
    x = 83251363039697766671444661318693477454523980361838166149604559277499128670546
    y = 45020364420378547808222762495013600970529247074820831861739394731333742828438

  • 2021-08-27 22:40:39 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2HNgs uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 82860404667418033518127292963280402614322259155683721645135345977623326513943
    A = 52786877182438881713760426346875716511303347915938659893068191858701941341379
    B = 47589281345148785943730768772866436250977079055326058461530213652275300315172
    n = 82860404667418033518127292963280402614461930479235665618066815569663273843841
    x = 65789674368006380022383871747990798936565094614948255975538198410739541773812
    y = 50778192727645618580281502794579264576189601133353645463535206210002659097904

  • 2021-08-27 16:47:53 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uGbZF uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 95936848008807226120008698923258844857123993463502418646742432050888015012310
    B = 34879449691758137610328908192202957893970066425490324750809781201033385604852
    n = 115792089210356248762697446949407573529576190861553096408671998785207323774596
    x = 68324151775858677012235606797584765632019595394029645855698657769930177158547
    y = 44157053068217164617979907695001503105034623676611058456312201011126145300450

  • 2021-08-27 10:44:24 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oyt9C uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91392064341431842580610790841927187033293643785806931374633663776492850166051
    A = 76879973131886364257898512679533429518081025354497501744563053771758575909158
    B = 13514316529252617535277594384475881132368535146292548769797725956510658737788
    n = 91392064341431842580610790841927187033346401901408861849442121237378095506852
    x = 46871518860595470862428409852655590288673874190886944435847829768624273197009
    y = 87015350169843913344430616254589529406652373016791702957728561515048959631180

  • 2021-08-27 04:42:56 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_rp0QX uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 32485717964070277075523231801568604688578174018567836501310653536771508121650
    B = 18171702682392505954753849562834746257091887179580956465653802750947840880927
    n = 115792089210356248762697446949407573530627593731052290014262113614078531102447
    x = 74536263724032768566294404820675281197574586859057804058421504195902891909622
    y = 42570093102230581978888079796658962339987557478226865528066920550934944623970

  • 2021-08-26 22:40:12 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_djzl6 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54018312515102579358724125626543887571816079276902231199939232871876578856171
    A = 32365773605913415635896631192803830047426533104914116038077408841970906016889
    B = 51133759996986270449366349846319218886293359349656063705622045200755813963852
    n = 54018312515102579358724125626543887571682441226789291558606171709728790067797
    x = 49646146069166917189717175492112512837046124587584978076261438995919385560896
    y = 4622710237539054816001274787696504773505255076825675315280886646648022429900

  • 2021-08-26 16:39:45 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_zZdTQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 102429165147834781196360139730629379461965450049362241792163989421110617839210
    B = 10999729550327869139594340092013999332125622856089010539529672629371828385416
    n = 115792089210356248762697446949407573530015985166244910576421250266376410133188
    x = 89820332569614747052581957081429176502016712269836445990614501873935698299943
    y = 110580652331503560424300086016791705749356671655308337635797894394035015523216

  • 2021-08-26 10:40:24 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_T1gF5 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 346167725353880950791293515952585953673886902520889994610789194647268662891
    A = 192408547225588637890941057117447981951778291931134471190714012376892526876
    B = 64289148990229283237298644696203916315573103962918171415317419212693764150
    n = 346167725353880950791293515952585953684721679010168213191354918048574104308
    x = 140216265058449022223512020931400938382029056329767967577514896706215792678
    y = 90414092337360088081276559672866780656081403027427028880750852898778674048

  • 2021-08-26 04:45:26 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Eo2H1 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20169795233815064956130481507990631240241757553642720754622539818921038462266
    B = 17002127922477347968540241810651473310190318051087396426178256386887728231754
    n = 115792089210356248762697446949407573530453701616945947924660725336590036226613
    x = 35309914230588749930599127456870611624833655318528946184429701456038313514359
    y = 106923834498949478821186928825336778124272043690738843806546295343481100107048

  • 2021-08-25 22:39:59 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_A7lFn uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 73130260129237770829992112450483990421618940156755782509679770209402550128447
    A = 21183003424610199583115388531854217711945482378421615353073712201594328972472
    B = 45940502304381256484204418440291254608919097911052973557942732582942687316197
    n = 73130260129237770829992112450483990421503390630533689951017026738723519823127
    x = 8048028044481282275388650102819062991080012519919022231202589356946373078921
    y = 8429272229624246021967433329865489088452609013429918906402837552450190674700

  • 2021-08-25 16:53:36 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eSzxh uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30584905148073601883512241115955187502189216231444569653963139501691455153871
    B = 1641138223332273787083096964731451885603936962673348975149831841710982192371
    n = 115792089210356248762697446949407573529569015898859638574400923497908308190796
    x = 78218273775240896724692751909366255855220153023353065756207216893944769057355
    y = 12067198426199278251093451463515345873054050058284790634402764644755708065044

  • 2021-08-25 10:41:52 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1f1Sn uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 41049351779161615192510191188397850579153154731699336729017736331229914100739
    A = 3463500862142739921428721257244552339339410086189183254980430506530176545897
    B = 17189936614648636333546786304397657241131326400950914720768240081589988699604
    n = 41049351779161615192510191188397850579225384898477643085648918502575652614052
    x = 33369369538217553362734830795713647106752863800164256846334064533540327058849
    y = 2057513178954588580730634169714150172803489597140057064513494342227016057760

  • 2021-08-25 04:40:16 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YPOxt uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 103303059793575890872847871617734830475983465750286682880954212440154322649823
    B = 46026812163173829544253498999797852812980909004607128913687512745352806945116
    n = 115792089210356248762697446949407573529770995599838414810105831739652492360963
    x = 104166977585307662334961903677050493423994549525598873058997415933040798348733
    y = 96185185187379719908841543003402959988392555472584154935771972780372242057464

  • 2021-08-24 22:56:52 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_5R936 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89915266628364651451794539944032255602815631321536667212331988487687862646161
    A = 41289319273490048832579924765282558546195296357516698523060664304413310478971
    B = 4865584765094878454534382752989782238421969767934979846356855032654062262719
    n = 89915266628364651451794539944032255602980953342598201714754218623892524664811
    x = 46519867784135260827121965082733300831494654475215800148505801850322204286509
    y = 73964206117596073266790347982643491134771018713912467338310208035689619505296

  • 2021-08-24 16:42:16 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cUA6G uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111066904018933544625732184589966398054263958164896118008864359694937611174023
    B = 55433514320342032396034669939393865694346524737783591144092345814441908914254
    n = 115792089210356248762697446949407573529519583772507361854832220746050076618996
    x = 57735637706945237504432454976042288289222086508921688324125306932371365281205
    y = 41043632630548800311587941237093579667285929737591268949855981446069692032572

  • 2021-08-24 10:41:28 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_D9V3U uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9768453185093342508181040971485684691620745388447402176801332186728428107163
    A = 4355828451177207709602963826259620295350718315590862031483987244993908629194
    B = 5659826893347818276342469503805113400088290769243658933367224659148891202509
    n = 9768453185093342508181040971485684691579119555891012321995955550238117036612
    x = 4409382492096036624938636280410080799280390843857280572284050674453331128749
    y = 2906300674400181804827577784794832291048908850581365355663393725290902512832

  • 2021-08-24 04:42:50 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_6lFb0 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105526233964978363159432911961895080954114966069595144440620635911080812138903
    B = 113115374042086162451932793245175502941987461308644034507155633325129236745685
    n = 115792089210356248762697446949407573530037623472704256598720532364058418965957
    x = 12717529867841273792259356879729518115631260201748251287802452336277868916150
    y = 76983000421889266432865028655962513422856279886103397765905239225122995139496

  • 2021-08-23 22:40:07 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Gnsy5 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80854634057620566673656692441966299012823733643147437937119208118742303289891
    A = 63405941711992074595376175735711840495415506388834530798904744784455541278958
    B = 66001488036927402133678807182227234245510578312543377023197594779462812955681
    n = 80854634057620566673656692441966299012753801241583180646177494780539329197017
    x = 57684755755500807664713212366180496685408516120913517400390840359532189082136
    y = 59499476646902691514053091011451423334475247743518694704982689000730884958860

  • 2021-08-23 16:42:30 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RHg1j uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31948483232094750907517498550710745471136188190519286700576925954053400150227
    B = 86552147641868878986520036929954533400253799471325545398056387889653986742448
    n = 115792089210356248762697446949407573530313334853401686892240820122963726254052
    x = 59491791525836163317666275544860317283544223669383007278686198892657775570063
    y = 57465275407007498757664106335367536444504187911364012186901110459056334877344

  • 2021-08-23 10:48:46 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_06u6z uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115562727389624965169977766943177160812022985482615155203155577029417724141399
    A = 67292927327379077536105985068491606376004742119817250520140030708331120612718
    B = 79998841624845246113385181213359921856462296636134623151357238218646087757348
    n = 115562727389624965169977766943177160812173006622041233883136708133276782270308
    x = 13768233263974410942956183760494599408067774752297836691073266954089765314989
    y = 44141618812635579523762571692170621429788257938592264227792278676338020839332

  • 2021-08-23 04:47:03 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ndXZ8 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38037265116797472536062948686417182759533944119156531042082356755408669948479
    B = 94681166983782116444491406757175062197751136076632911979360972679791617701291
    n = 115792089210356248762697446949407573530171868984683525281885514575780444251013
    x = 103199143929649871960374959557507779138104997332422269751625728183571045062569
    y = 5244716674207295911205997657346034083399539349555568118203090155346391497420

  • 2021-08-22 22:39:36 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Icjvp uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64028175840837425807269749640375447881642067575265926439034738016204840410687
    A = 1417199158519720350241729991303576501846176664427861177915550960469925657461
    B = 40445214577753162373172869772533722108714815399974095821414256959203209677081
    n = 64028175840837425807269749640375447881385954520881101984314642091280419065959
    x = 47214657001316507800289394618073258105115194915867094851489301265003420093173
    y = 19445902624364804971326803278655840112260590161603577843314946553473029048974

  • 2021-08-22 16:42:58 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_tB1m8 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 49644933051986532565490318658569008105407960106923458173325505936960022727038
    B = 12703964262436936887427275367402795657267787334994046456412853732663466411870
    n = 115792089210356248762697446949407573530239336849520910806534738057089984737916
    x = 114544961472063099430652302568917729052537404969892051718444668842275429218376
    y = 95526912390005176481304905818914715122215841453288082514292015253494762441404

  • 2021-08-22 10:45:01 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XwWda uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 107001108470373328114726349726124993866676482969924180761238155681028874023551
    A = 48736596424956659508450066912172056169744941082546375304552226843554244453515
    B = 88386695052612648696389372308712947813003615277812627917433582595769062384320
    n = 107001108470373328114726349726124993866850620951538813541324037629116677536052
    x = 77176464232150078947213138582101052355332508839228997713079032356701298179826
    y = 30137745269682104691102855785076635154107024187157180630763909031762097390782

  • 2021-08-22 04:41:24 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_mdGUD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113911549715611055233203466958468655753980732817122851111584263303368148890871
    B = 36029432353768010856941686151861270916024636355434627516022191743585805904837
    n = 115792089210356248762697446949407573530522227487346356048065525691263052314687
    x = 73053362391205493614463493768749830337248790780894997137188765354004986593398
    y = 87623897037670623088836876333849445447440467446859599411804762945151126502562

  • 2021-08-21 22:40:06 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_vfOIC uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 12449704260113410793017060684838023755733714621684269691681206793838794749637
    A = 12378933354486501662327142952568106617007399879596941317954767605969330112828
    B = 10625996378535507398437288327163536951105883053110427346934826145496023182222
    n = 12449704260113410793017060684838023755705879780068151882915269722675926067499
    x = 11898475309518408205919838921539886668885296228292667155996720144492245198617
    y = 2112021533849071299785454848932427550520292200943922258574130428013618598604

  • 2021-08-21 16:45:27 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_P5x8N uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 50339658091701368106000727041081589760777389709524020254567266236658001947441
    B = 59391532784361330953147385548596936835179848840029584715477498412628516215095
    n = 115792089210356248762697446949407573530516501730365919521805629784105402370732
    x = 92448578404533652381240328436137073583498733888676834535154731700835178702359
    y = 50967455343807865347311162527729198502856560189074793935058160402121526129986

  • 2021-08-21 10:39:55 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_S6MRS uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103238769855861647197378631131614855145742391541930282568988844298875180653079
    A = 7284004614838341632968444300921018791520802434731669489731573463108514703467
    B = 61193002353601778980267971425628381072876404250615426403132046341128242318343
    n = 103238769855861647197378631131614855145162197655681832953119687836364397686476
    x = 22130047334960020824930988736079519853072519189545984496409663091474015639618
    y = 53598232855833680168909765480786667994801253871241116641877767364529468704860

  • 2021-08-21 04:41:21 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6Zwt4 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 102152286744970233697037890653194055501015142872115906713353013789101347178450
    B = 26734848788634693414055288484825401661614410371224311755474454108274365825759
    n = 115792089210356248762697446949407573530651098316335883795149587300589118057257
    x = 75917964773193856140364288786291039869930918479438789730121313750462710803955
    y = 92150184126415603870569868328944606876948124590852832776959596604954334255696

  • 2021-08-20 22:43:25 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ofLXb uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67282521848340239631566462157616294188874429166819959158953181233872105141279
    A = 10349649122486666632495557239942376766338035862713032882027263363507421062760
    B = 66506209499212177910836157156210763507592468910911082195644669182092352282607
    n = 67282521848340239631566462157616294189202692195694669688302620430376418454861
    x = 18406612590319558457468132550529689014199799127227425024005031410695892179105
    y = 58155127881591831555041872969613210997345667792132205287516003237330660100000

  • 2021-08-20 16:51:08 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cMbLe uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47683559294400045428430611328084624153649678166489092635527465481682764775337
    B = 105914983184588207005939883434940010652889151056729726829466354125992734330221
    n = 115792089210356248762697446949407573529873014471814683745600849423203110563612
    x = 114559261029313384913422724118297917822254983368900359287175685924504534083835
    y = 89512486815139259641607252062145584956927088201117629511183251469737513902980

  • 2021-08-20 10:43:55 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0O66e uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 20125022140755783135730564461004732460390548478254217358174713834203533656683
    A = 4870013871264099627312995263466635174808517531637511859385860995467133606224
    B = 6668687298180826766610028063100207912864800012177883946968141929240356091549
    n = 20125022140755783135730564461004732460237021815564246187795066306769658478156
    x = 16591941690326648027344615650976291190818620603234534557351662279215323927567
    y = 5812582923762515592373959144618448971956392983436477461454644082571261897826

  • 2021-08-20 04:42:54 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_haBxe uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 25016112584899312394829266227977749808617949884477363124849091824930313558408
    B = 44451963301284312390919422141959773937191041437875288137373826861404104376665
    n = 115792089210356248762697446949407573530008859753055346156664859732897410891251
    x = 5190203681863308775928136396107308241260272863268784789714396438838577157081
    y = 84398737899968687465987695727873661815823886496106662505910302556110963206194

  • 2021-08-19 22:00:20 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_iX9wy uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81998462800510885458379005740743419774311621947656048448939159139327962624733
    A = 27526755815444228095834969271133015727998417520708694262142474756271718367068
    B = 72785837982508301569556536568906990155603811304569304808690791054639689253100
    n = 81998462800510885458379005740743419774417913436381311798834512090014071278899
    x = 35090856373639573766499799260977085352816121867114191586040731245976805498266
    y = 53829483277924587828146489534179847614240161979055295398532371651969663753834

  • 2021-08-19 15:41:58 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lJgrV uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 21114151932399091888730976813038200845695052856941662587128434081909489692256
    B = 35654297911732111698725718295173780482426645311289539210399876986522642333701
    n = 115792089210356248762697446949407573530518160756588231024882173949783076534772
    x = 70190128209376587217778098264225537159931644582218556022765511175350067325176
    y = 11278086821440448981286662461597532920602886735226897088280424528393026492518

  • 2021-08-19 09:43:20 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EHUHu uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92502171741051027593579214731661994041684855770680763138115241245035680842311
    A = 66326256569812768835831596091890847233000852247379065532497244941686613645082
    B = 13295877939479214601886300919286032361294026341277274167793498288285980926201
    n = 92502171741051027593579214731661994041891009394926524130071757294774043640732
    x = 7081368676458257747995634314430708203983206723616935288410130174479717407468
    y = 78211070713571497260283256423153672597286619397582054198333422476184762751088

  • 2021-08-19 03:40:06 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Kh8Jp uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 11127384347726212734344702536964091716347820041580422376244022521940495908068
    B = 42767600652324959297005600996048117341675401979208560496070745211696065683584
    n = 115792089210356248762697446949407573529625219013169791653238234220447241250571
    x = 83506515912743492036994975803407524844474504495756285066744986403130461128642
    y = 53193549014188541901649596882860584199958999557436274816608619760187570822206

  • 2021-08-18 21:39:51 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iov3p uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100600651546332290035243682554628163444668658093465320961556108020714700518781
    A = 29011364046053264982366065063674432036578149836658722295683888113081842746862
    B = 4458098654597073403838578367104379631280602879166047163582083131639686828972
    n = 100600651546332290035243682554628163444518180388297617587618439073477213723083
    x = 99575063599911994714626551249127209440399832563484900469866542240581397778328
    y = 21084783588031267152997621050591393830496556509376327308674206756844806557424

  • 2021-08-18 15:53:17 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VaLLJ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16506714180294421443079459868019127533457662724640108325739276351470041239171
    B = 101581638598796311548058279812742016634216489152253948792248812368687442045778
    n = 115792089210356248762697446949407573530000671556313724387233554195228382117772
    x = 58756459426424252436643265371574197427071607512976799267968639169781461062056
    y = 32572356723010012138254113130751007894148453170654705265023963761107042344650

  • 2021-08-18 09:47:41 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0wNJU uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35663748110392298443113548250245513137574637503976597059189206331013723794639
    A = 3156583121547053862779683283032640790801678603960003700624210231384421586633
    B = 15470427827978395368877896553493054769000075698679332920017047834079646078353
    n = 35663748110392298443113548250245513137806458115176430648994018463808427177348
    x = 6631211373456868473672382952620319753014816359750627230587231199184194421367
    y = 25632938090137458521858420776797662702927421643770257770527112020180959212692

  • 2021-08-18 03:40:49 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_0O9hX uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 36806362393295451510473809210500058601778482121575294840208910514022014828687
    B = 51871782248700936767571322582084159715182073165735584322152495926296669723979
    n = 115792089210356248762697446949407573529662467787641259041150046968844984373981
    x = 9746983195022745166128723551621145781861360005361570546379015863061975124652
    y = 70155778654568106750850725695835744866101078387493876059506023440345555940780

  • 2021-08-17 21:40:43 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_M5XTI uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63821961859104247192996013187056777421198419030812475203519536919127114352953
    A = 46181949219300625121965072771515419645836808673797244398905476558909816659523
    B = 38430357137490913347551657724529744938734165238549135432450099698974935013060
    n = 63821961859104247192996013187056777421024397745461217511748284706139976989587
    x = 1349356997639261554448982175674642030715917423796624367295034774635294845018
    y = 43635318618451383213524525716298548335934940329622206311736061409554306538906

  • 2021-08-17 15:40:58 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IPOft uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 100694845353768027417840921101535613139091097615053497749273204385319226477169
    B = 73190738521787388319310307088148797742175327177533158667582573615298459861964
    n = 115792089210356248762697446949407573529777156331188872800096071438078168885588
    x = 114262396289082890987569910043287710293274566734685344648443317154032410748963
    y = 86852149235219282645777192042639030903712205940512302456804206568668264944362

  • 2021-08-17 09:47:37 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_iYpVR uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 113111163684432312863915352021249866333071302106650381849799843248762839289323
    A = 33883700100665296276057674722096041711650135779992980397488835674450947971000
    B = 75343146386894936758231711535116952157064844938075802647007896969595549129902
    n = 113111163684432312863915352021249866333106855757113086797922872010635711069316
    x = 7627459525197185631826473730334174920635172346067074643888730610179721830720
    y = 77557728175636888540366564510854931095250970459728557913211657994281451784018

  • 2021-08-17 03:51:56 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6Afro uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 71755251861846464515761227331517850019507876746742874021420714946378312999695
    B = 91399851089426875887648639885945647986509619104995445187013740274668681484551
    n = 115792089210356248762697446949407573530420484993895931477014089722952892615111
    x = 55457603005572567795152991331212846105819781429960187797245824980046348985152
    y = 67520281357969504230567172832156525299741679945349550442648861915149678348832

  • 2021-08-16 21:49:19 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_pSsui uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 60928140067602748682095130579447706052930596785180176516580846692593265418243
    A = 51154253756980303369903161134956852114736394327742633274355199919795563869764
    B = 55203490629514910014146113350679657938468610679582157885368927846609818429202
    n = 60928140067602748682095130579447706052666542399449609405288364950968840485227
    x = 45372006366228729162722020039601562296599028346919595389742090516460898403166
    y = 57246241025742219944385927423675643597233858645897282501684754715076011954566

  • 2021-08-16 15:45:08 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gKwiY uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 49911762773401129085622716545136613286821629203889380114822655520665416128135
    B = 13147600779259203653136924651252401696611157596365435826284063474080300042149
    n = 115792089210356248762697446949407573530469664381528267311020076164579107515652
    x = 8603460714868849586598738405474450800291713816642824704463713784726939781136
    y = 90296811975607113538414489549421647624563399037510556104514804358783751664984

  • 2021-08-16 09:41:05 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XIq1u uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1549354189344305807531659898739901518858310398787157901826591968898062410711
    A = 1064207594330532003557639272253139410013099401794743358345721678612831191612
    B = 1317690764417166836041888606896687423375221143695186997332233697140441896165
    n = 1549354189344305807531659898739901518864695702667836588646250744170684451516
    x = 1208481541364620458064762971797193396051604761390089856745422716647797628852
    y = 953799605156562308901039112028793757351281598929173565245273933257046552468

  • 2021-08-16 03:47:45 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_BiGhw uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 64332111897955869889320298373582028007655719806090407566141800419082781308694
    B = 111052349405776733576473055069919090228914675707962792867595923952907055906666
    n = 115792089210356248762697446949407573529804088793144946595513969793226103610817
    x = 35827990581851917159727393352275350937355651636168093910391207360196871156863
    y = 95841532722473437705568509911368123269987868153836191519990516418627443896874

  • 2021-08-15 21:46:37 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fVuOc uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 72241123770711547521641982334018123786503983875421989097641958624995771718119
    A = 29347342429038483573423386980201805126807017606875121816783516607710919943674
    B = 32958959941635709509143385055773592971161318516819277449057970541952402982264
    n = 72241123770711547521641982334018123786747384607554184851129613413183749409061
    x = 58723731781903210766444605512100157170865295352126958083090074167323989306927
    y = 69357579651469243604426917191119257865617532194542366172354472569576308667012

  • 2021-08-15 15:40:17 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LwTCz uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 27297449002694089919860872456038655606029579973974002542180925073283790867332
    B = 87853633827445528931652319604168794104147171892040786714526312413236998011949
    n = 115792089210356248762697446949407573530366983804424404141659459775762150201372
    x = 45947377545573789071805904504219722379061661281876849001649593031243661766169
    y = 107945844631495221288513579181838671730670120164625870890408859387364425283914

  • 2021-08-15 09:40:50 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Hn9Oq uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34770031131188032665241706867347398009407205308314608971131166196446615898011
    A = 18011419564996066900650561425440404487411613500199089108235836209234237308644
    B = 19396808221188248994418538795322162001377772139491446248764840970860430436601
    n = 34770031131188032665241706867347398009561741317713444988518302855527717725508
    x = 6343247802067274034154309829609743303959179387802661061534658300213559216996
    y = 27731432097984321844482769059528784230301819544438955545368480192813773583712

  • 2021-08-15 03:48:07 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ZRLUV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8467267523524875540326824588122451521087409217524629152382920572635538842018
    B = 23502672751963946174053498450336267454469920207950395607491609168936007976349
    n = 115792089210356248762697446949407573530264875735227209547434228380835064109897
    x = 16852460293201911240906491096195247045088365330302158094358405513569611680936
    y = 82291903248846805899120284923014489266146703216547050885361168785474923735030

  • 2021-08-14 21:44:04 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_SfD5Y uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 97374422206058116737457454668447195846079963949450084233351156547569400786839
    A = 58428797755848777152213773878585170996904136429924298976008443149755114256515
    B = 91697197982316832246881879786425484114643176930864650947415279524877477198451
    n = 97374422206058116737457454668447195845894883629511360142911569879732437165399
    x = 47828168713409939010949443077455872970414234302424493291138631939271022569157
    y = 89572483052287681783178844392515535264882180414071097030947330935205781731330

  • 2021-08-14 15:44:00 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_SCRjI uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38633604059400478863890413350836079448638367918277232269475698278708617394602
    B = 101831634044565372655321889756200250979160371196894863354941167905554267364439
    n = 115792089210356248762697446949407573529761007246393841956959920258027599736068
    x = 96100016495788944750867323323434252793586956563093608248824013936727275077562
    y = 74109581252674845636548132120095165880582313494960511866400768199284458101128

  • 2021-08-14 09:43:23 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hdl9Q uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64746798766712698492109141537048918663975957120746216537692288947052610915879
    A = 24105174093865615643788578551227031962251629027213011477150319060552539874872
    B = 29095987218270367106422895695569138125226925340953081988174208824667924000483
    n = 64746798766712698492109141537048918664047188681083591005657197040328479718188
    x = 40583734475297816297869937072507745788950242064542671086655486518284167978320
    y = 12119404755778515696639495734527969952713760460510772015277982399643052421444

  • 2021-08-14 03:41:03 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Tl4WU uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51107934596265181162448621040929876728417338289076197160859503621748098636607
    B = 40705249027965100245249848072895740613324868023199816396678603102668836744685
    n = 115792089210356248762697446949407573529753303106552691059676139170992544823357
    x = 85971997038583679298436246530620845518553962060002083549359177462635366749494
    y = 93246168620828317027924106222998856929055489905322481795926108377858305997392

  • 2021-08-13 21:48:39 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_vS6G2 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 46694302869328653220070752500070904947581862821774266872987582448225143415699
    A = 30148699608901823641524333580932619678616770730416462407961336393564601354183
    B = 21025220667669611608801212047380898838024154621875906516854718591216042601718
    n = 46694302869328653220070752500070904947689588282807000307103416833249982301597
    x = 43549197306194109327863098751287646373702669112996288528407225410997990293834
    y = 7059661159657954289567192322234438283815309394504699292870637965749068074808

  • 2021-08-13 15:44:51 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_BfiA7 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43226728582711198244185550975636658281843570699619545576825758762768708051096
    B = 51451087433870781800220529065025219488328167359044927969393462140843588526477
    n = 115792089210356248762697446949407573529811137815679168072481795501925167295052
    x = 19514084757886643410276637468740900756004153120845098604348941450785962063399
    y = 50217607780952785165376583517014786674154565158552100256332309185332466827340

  • 2021-08-13 09:41:07 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5IFtD uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 111094420973607957169344181814439670901190921529222749907691605579293007611851
    A = 42670054062036834738159734444039540494110237293723559713647732884479655912945
    B = 29471988187777001427847010143407935247660062659320903413234753952187087065342
    n = 111094420973607957169344181814439670901561744154262649548058150296982132540756
    x = 72297413484020978347019098059614297686074534821501098443370838554882779576727
    y = 111047128930152729407167429666332670768833588150651829981287074323778147061294

  • 2021-08-13 03:44:22 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ytFYA uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8228815337190130021076482144794533347799608821910119214149767401090409497685
    B = 26453458637672085694790063165595345613318111453552322047528868744777511078140
    n = 115792089210356248762697446949407573530004134169860648883887272877905972941967
    x = 37784175510433695218946854445053542689066957524699101513180348305128180307587
    y = 34551796112564522139953853947815505591482079765943682453271405415410250793036

  • 2021-08-12 21:41:25 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_vupFK uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9621811187307335471760916713238593517437580672945487458948426705171109383579
    A = 6089884661800239621056105434615438497783663145762434294396895681362782193078
    B = 2156448598954704338334265902258001587473844578729780457109709754390434112784
    n = 9621811187307335471760916713238593517262203461468561289191660533317324865219
    x = 8996902092882725478560646837466983205033151901706919972833607043507604008556
    y = 9141618943432713051462923289568927120819967464724833010607252878204400430678

  • 2021-08-12 15:40:55 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kgNsQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 2524101224330215597363664781963148880465091643875871100226778914837667180987
    B = 6224104386766256000046014375671708650841762214100350610403989155268325889307
    n = 115792089210356248762697446949407573529485963751790871658795042867676603140996
    x = 33834667537796352009276390523802938789327575095743675943015565593378698047316
    y = 105676339819168542587437415162948014777341145130940229405344436380763992307364

  • 2021-08-12 09:41:43 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kgxYg uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 98576169653009011283982202316459009042377925200141034340507865693390744291739
    A = 34389650295759301095138074575833272435126401401293292399622071831126103123877
    B = 37778937200405185475635358778170507317774145692423696708337054811071223924949
    n = 98576169653009011283982202316459009042606858355048187658612413745314691250052
    x = 41217642659126662956116211926151868995138895787042767137483783491948248577570
    y = 6899381491066846221947899093236945544538125523196536780107084552617000135854

  • 2021-08-12 03:39:32 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_PLQ6a uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 96530901207785701713201269675127214857634880095491397506010589321679470012296
    B = 37815570634711041144717003132457913529969160344299330049167291759555657661691
    n = 115792089210356248762697446949407573529502314082771910672095196797418075565801
    x = 39136374251696887133479789175345710942445031725724655802014192636166228595105
    y = 11042931658331685213440695285127937043265851308476732473008332849572638897380

  • 2021-08-11 21:40:25 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_HuB5J uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 96563368239825823944180519903688526171423410904073850934045399129818496396639
    A = 89770300640932918493539720353642630750523402939497403414234165068054303621509
    B = 42997446171192403906488518255137665097026164707654472085588418564663710793442
    n = 96563368239825823944180519903688526170867201901478822905452989447959834299559
    x = 47838846276237397117292915329315299820420983292370499566425831877130931454701
    y = 52947048001273742877590790739264275499253075129069002021870810594569972573504

  • 2021-08-11 15:43:22 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EHeZD uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78376087182888676773825601012396411033944378937181654944655635585076672340711
    B = 42489888967953121298197372249187287487029272101748928831871200354385998780787
    n = 115792089210356248762697446949407573529800742347448729844415338611898143822636
    x = 4357043509573699576080569008485411248416253951016670138496485507363061122562
    y = 41270307182987630518547217186467593034080578515083680752982210233169596098096

  • 2021-08-11 09:41:16 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_QE00B uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81139659653411212619426947283955163109696470531752220495449476401670807831543
    A = 76873149720009313652620912048718881622961812087753169869659542115346678605774
    B = 37873662329304036077737849083103187251217010141388878948131905205134096491152
    n = 81139659653411212619426947283955163109155493412441282487342487177596571455396
    x = 25963934232215927268228038849667783379156367003935714874727871045580964077777
    y = 14659456489829166516632379521020524029069380380410181264210223605626000158740

  • 2021-08-11 03:51:49 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6qTMK uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 114250067861886233797542002573666551592865072161863471157212574414051582276791
    B = 22142840245825960896174511810095210583955586401143683219229618659336585319926
    n = 115792089210356248762697446949407573529738451481555642058228679709898418135497
    x = 55620039043145884270479775851476359811205599004035513554516756886174467259980
    y = 46262079128342181735824518975996601677251876105676561108534197643922886009542

  • 2021-08-10 21:43:19 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_kdLTb uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 53194301717748265735343473911983154660828960408720066520650432937883340027517
    A = 39726458721897114755496486781400357605944298180277409384762747827121955848990
    B = 18191949547125136759597145968768176366990847862787155479534483398315756058528
    n = 53194301717748265735343473911983154660867385668925817298996996828559135527047
    x = 6227176967240367004193643616673276207389834431595094998506059349455218098489
    y = 3739078650217398319060850473034539292507451788388690336388839858349519265074

  • 2021-08-10 15:43:40 CEST nist prime, fixed a, Montgomery compatible