Archived curves

Find below the archives of all the previously computed elliptic curves for the security level of 128 bits.

  • 2021-09-08 04:41:12 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_GlBPE uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 94183238372515066591894097454159819564560501261595024011464388878755429857439
    B = 6035830712264930366503883886467237807606087585862045632201763676404577007038
    n = 115792089210356248762697446949407573530088154386890006857959332565652670154367
    x = 76090918250890964138831037364203937771771015078892934529981126292395349796346
    y = 111631561489926286718099921071017501393561238920609887387985337763317445655710

  • 2021-09-07 22:43:07 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_gvlqp uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 78952864510878819517239565450351186792178456569435283600328946876771629872107
    A = 40685453237553209219334159022774501756803275426857069835187527351605842279938
    B = 73314415231577320180645690821832208159201876298991824078436941786782456367600
    n = 78952864510878819517239565450351186791937389038073586576264759823180414769809
    x = 60079286658267130696719172375436573049956084896588540055657936703248901100183
    y = 49273653942520047930282942220638522332281668907020105157081762565053676064132

  • 2021-09-07 16:41:29 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vJcXQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20455629353000825606357498102513842793886196134798085397754976649741105268919
    B = 20801947669775568212134185577762378360506751671945422369856132278350817206862
    n = 115792089210356248762697446949407573530664032929385118877875823895909416108612
    x = 97057319437718416244300703822425348913171617673970183621503095430377077266880
    y = 57269795587469150614959424693211337676465923214230034760750618845835905531820

  • 2021-09-07 10:43:21 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kPvdT uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 49144701366659477854716109159601107641807437074731599016303247259334881392247
    A = 46445352990585816240913845249274082387432356883284192037631761743938355282082
    B = 25102364258811805678513788486598350765204560602315410211367928678650078866190
    n = 49144701366659477854716109159601107641681702874859233414449579111745955945828
    x = 32121352974594319887170518572854299712818183911881390165637161042064164489495
    y = 9409839571660689500917812025504397836786524601112032862047863287874187773924

  • 2021-09-07 04:40:43 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3eEKd uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29136211585909413039205397086904748717778021796021594049067754348256151778996
    B = 78824643533189030577986521672170422915175075523986667958523373240363355638527
    n = 115792089210356248762697446949407573530369758837358985328470563830094854018543
    x = 2555028952120823244611827974361609428798006721257556631830872257469851863961
    y = 41509615529704001269875534119150896652042054797182983132911242295267309770584

  • 2021-09-06 22:52:40 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_1W5GN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1404871607326635322641772465677443644269157086536190885668583557300140814231
    A = 560181930544184167610438457708131795160028639476884986333086227609854090385
    B = 380448321975765941905062492871278917657536167120552642190071566205388547312
    n = 1404871607326635322641772465677443644245428974152072478495321637897602237111
    x = 1301347256478701790777256780625159307068377642504068860298835965399806050437
    y = 345147887892271343957862378896609987870071904260391143502522438700128828738

  • 2021-09-06 16:40:15 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_GOX6r uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111809252422965597049252742538623360487388856518734549552055330121046394131338
    B = 40122690055628587625375885543645945171157996836585142435166860362033917973459
    n = 115792089210356248762697446949407573529982067368992552740384964058577549605668
    x = 22846328858380567809537311431124085868252600902296020858260590140907506272659
    y = 15015684227723217842466624543052425451053621896810904557819486944904007336362

  • 2021-09-06 10:40:38 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Fq76W uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80996645112339795816869403956197132269707706316561566145414911284506607500051
    A = 52670124442890229099393016739150254232102893678873843677379477079192592137727
    B = 54401052608809950220821989498907968001689980939876609708409162626037348674148
    n = 80996645112339795816869403956197132270150578985088802771340439739830256852812
    x = 38962664166538686883322265837925761799098358289423064170766562742578114654519
    y = 17109308330657708442014192280718535690111842522956628324954511908851130057218

  • 2021-09-06 04:41:49 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_L4l3t uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59044138874428720303960904493367006869794527684733194029424143207033684901913
    B = 11395628828813964164791116627992592138249854645874416971799811027153570973612
    n = 115792089210356248762697446949407573529901152063080774686257446662713379620237
    x = 38686183594569432826360434156523184324089776804203732811147653231193050604270
    y = 110829726020154198944747428945477247153480983162943028220581741106913574758330

  • 2021-09-05 22:43:02 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_unHw1 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1519810144360852075575591468442971843822075437119917366843063716681114307499
    A = 427919446446344554363314991599771236803691096821856522757124816734380707463
    B = 754785475132866663551323450402939048204106104391571305653272484971746647166
    n = 1519810144360852075575591468442971843843888903415322343446322132033637954769
    x = 942094057848185729006946995680319811345350221417243157190723772758700837655
    y = 860399831173328619643098016473204648658499190461950864152333807582283321696

  • 2021-09-05 16:44:25 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_E1J7u uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 63897346499586379451493830517907220058077675330198451904140935972408297594400
    B = 95309018174480393480171852759225511475810476535519090374401813565438824089399
    n = 115792089210356248762697446949407573529982072324339616176269209308077753595932
    x = 8717752196207192348082227766834442246103583408529736116096442725031845208447
    y = 43061298529108126211298367829997720664614704913136770024057311128018687539804

  • 2021-09-05 10:40:40 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sA58u uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 37225085311634349525702668755418051553453975603612498861868637113533596249099
    A = 34280654219578896024364549614283304930895764764294435294097206085980260013800
    B = 35412393549564859787901022956697314870116285264297210491834730062740548974502
    n = 37225085311634349525702668755418051553609038554551579515704925500011600738476
    x = 16319594746460476572684592434066625508643855428859068405112497086601072331646
    y = 23233754142131356885176686525116812162641972338116904213540058769642743833184

  • 2021-09-05 04:43:14 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fDLQp uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83956200885898591267364876200547008368163711840214441502978825546102594847840
    B = 96372595337519623180432237486943980962034744299172555119789737101953493551609
    n = 115792089210356248762697446949407573529895928692049386935582584344251265876287
    x = 35648988570523146132239500959288470787697323531228665990674996464380875062976
    y = 81425502723464327161351370340357483525843712569989601405639398263628505569576

  • 2021-09-04 22:45:12 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ctbFY uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 77527377951212837942741884448012652595203785028330935884319374831040099182331
    A = 12366642514961544086314517973742142213405316119246921866071383882848309951225
    B = 69621340689967576878736077838898180809347226445373764121127856216416483811113
    n = 77527377951212837942741884448012652595432970220921005586359617007095507288693
    x = 18005738446399137975610329796092259033846451432215937757828743783761608999658
    y = 58381815289755220691301223990634099151821171688387147184351309795567871691830

  • 2021-09-04 16:51:24 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_2TK11 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51619858782220716409712956994237801729784344734486891051392733983547228488971
    B = 37098470826875222596146566707513860618457210829570864368520366239581741547690
    n = 115792089210356248762697446949407573529783989305898817204349332911077718336628
    x = 50306972813131599353783555755265291448168620556079632996899344257573220789502
    y = 76897589783133397354206491101316805730294682363931817303888005354023337489928

  • 2021-09-04 10:44:09 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ksrFu uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9588652526692536136899228919878619301503534260010719924139919724951679251539
    A = 6266603141456344872476783206570139367407256630506743171632768714874250342644
    B = 3175848215393186548022810958205467901697387557390209452728530348413542423171
    n = 9588652526692536136899228919878619301473354874374318220375046957765924141956
    x = 1446995733005476723261364430121646216384763075158591225525950806070497525237
    y = 1668453463843326314864541162477385644437547516146722057665797467688533549498

  • 2021-09-04 04:43:18 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_pPrzS uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 13149128510716363080202200910788178422463580840929607457147492294770655688267
    B = 41945559414443501315629608883480116915526380173599968518311089868827253549275
    n = 115792089210356248762697446949407573530555467594106203564502787691162863699793
    x = 106642450600321003595919514242784552853016914984042395165132896154169092797525
    y = 98793835925121478099271585887210892554081699304587464242807965415831895344366

  • 2021-09-03 22:44:58 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HE5Kg uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 23251315764197138428462621804343756534998310022482537237939511104921998355689
    A = 22670198653896686228401222755047894704508492293497966222315687617015471117763
    B = 13885950331005833921582398947014694470228252693712634270624205223314580981165
    n = 23251315764197138428462621804343756535137176348058451198306642491913152585981
    x = 9889201114914520214482148806765186486011755358878748716171297171045198172952
    y = 4546132801257530491900755823662558328596813690258874948839460449796505667668

  • 2021-09-03 16:41:53 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uOtGI uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52184909945908795199017687284626231287138773847682029521578798534391362415657
    B = 107078373381429177942199006910540435172841445267608940124048359533596769583525
    n = 115792089210356248762697446949407573530359878017593685742896143722620036640076
    x = 49986878853274914913151238686780036640308968852685619779059370416950867448400
    y = 60847782465566949067656737958623558033016164199176423392426054581406400477036

  • 2021-09-03 10:40:23 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oeWJY uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 74206037611835415339907582500659849498122053290299339211449165782974517342991
    A = 15868037435810611384668358444765694536922460389058874335183627237789283816334
    B = 19034458577115024978671807775344925426959464902466865006405019768433729008017
    n = 74206037611835415339907582500659849498280181461395540878549493046758653147892
    x = 13220964701927471769244737968740005963665102724674607617555799527675861053987
    y = 66844110543181899598938695817359936534797162953760748830363610069338131929318

  • 2021-09-03 04:43:03 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_5elkQ uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81587874475858967662376862342133854734900652779633765415144689273069277021170
    B = 75818429091286166849333528351568774675013293170535915183378019793075682108838
    n = 115792089210356248762697446949407573530654645898241850829221496131455275976321
    x = 27267629106277847787785022820438418671240741470837664715431207283083614133478
    y = 18701482189787607791026947190257952572595097647633341321256631667622357862318

  • 2021-09-02 22:50:50 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_duHhA uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28317889414692292336618684540869182679572230775309010560697220959087622257841
    A = 10693047898186730395586623378185253169147851729457881302076029688645520171267
    B = 20035253876582397001955573582397952019446358754998332925343577883994350276427
    n = 28317889414692292336618684540869182679520151720315711012852041161033217851107
    x = 5072232122439747101753233921149900373698562586337860553295033320219015412094
    y = 13105922089263347134637959787143783122740820073776655209577928001619679167998

  • 2021-09-02 16:42:27 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Cnf6X uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20659069963354829292946732848214905232036536071138517796686357311296578722336
    B = 32449982011383917573786494347716465067504371195998549372890788403298815827658
    n = 115792089210356248762697446949407573530519220782584860894926955101375752762876
    x = 87113920373379425623555848263960864547281904481945422306714188663781088151441
    y = 40225351506603092775976531911545952708966930723355307269457106969947843483186

  • 2021-09-02 10:43:02 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_bUw5i uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51392005836829420085347634059812686866715448746658578409454708168519197241519
    A = 28728324211010256521895481988078685542155735858378166762101890182763595457822
    B = 8737773038903034515572713979747881640993588669297671214993719935785234324668
    n = 51392005836829420085347634059812686866590153479285150569906850577075895575212
    x = 26152937398408764434992770365152772590098067001648261149627256593984145511897
    y = 11003015516199464773898167201016973014465034045406450146212582859682437388238

  • 2021-09-02 04:41:26 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_JLplW uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61512993439479893161629295453667339934527195272069257222823276508618914739293
    B = 80165278569903160304583580893812841638774817753514462178271158777194799231935
    n = 115792089210356248762697446949407573530515586212151957100400229768147170454581
    x = 84353844120887222823633163008505323274666332362576467395941680673681304858364
    y = 98516513656163444005960042800305197871580137373950039942888533968803888357968

  • 2021-09-01 22:39:35 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tSgq9 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 3752793872334085394790139886700725444720111839989250817595935364504385807783
    A = 3069949732069747443158834172521423964034427387089205137753661559865618453333
    B = 1390156051955631712240410766624601465645975312895011695290606428895416298874
    n = 3752793872334085394790139886700725444786293099728936005565652751735114805431
    x = 1287563325420300523867993768015292119574960761313548805344492828029741669520
    y = 937883053917304944689014983073910478281107740615123190042869070174766097192

  • 2021-09-01 16:40:37 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VRExS uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80936098716605824174674504477851717082520062440140732916829258097755493980490
    B = 32883094498858381475155417375473577169014660700787631023194039313741303110139
    n = 115792089210356248762697446949407573530136080403230525940711663357342605504692
    x = 111606974935391254865295147797306978974754167776331498344531780123058485100515
    y = 30901098612893586071105556776525170094578829914808771176472573495650514444864

  • 2021-09-01 10:43:04 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uacVL uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8834981860759800573262412093956483953715806739408283633734396804044202852651
    A = 1434840270437326399537583555816068207887354341419414322190517363943784147001
    B = 2596533125401473863392771833205539342760913712899411604723384841156214106462
    n = 8834981860759800573262412093956483953809958772867020116879581974773557711628
    x = 8103738740400259586060594062799348727671328049801884093209484483858422233507
    y = 7331647038079958986284328921588404973717959336756597160709718742809110689450

  • 2021-09-01 04:40:31 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_7aCKX uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 63771270921979114127576053197182540172941494071001060691284071182777654057172
    B = 30402842591795323258749445896748353871201136237569718295168356748046121534334
    n = 115792089210356248762697446949407573530657514506103153442141887964302555407713
    x = 71015896326445238691626041807268873201892623541199072757582829323586107309125
    y = 102417007112853850820659431368989598139993221898300921514069089171718605775970

  • 2021-08-31 22:46:05 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_K9yv3 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 82401010623086973744121004347698844344016814852954807373090303338630527571921
    A = 48124493473093914066202296172184483383258740817352564173300514659508773257148
    B = 37723072061183065350846831999790178534957217446525067657879335609648770106255
    n = 82401010623086973744121004347698844344160491059318489702998406927359189953713
    x = 14111619317658959598434656423151946117309934792906999058633279740726245797703
    y = 69316792612494711838801597330459806702670008152314088945919984156331432219190

  • 2021-08-31 16:44:02 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_l6RPs uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 41404361046199839984570976150267073014198147449096058745661504088658942448837
    B = 10988154377396951679569654284876879625655896476021418129302312309329909465029
    n = 115792089210356248762697446949407573530138028500996152302672925557849749177716
    x = 102737152988837686509189512499724417823272212145781049769617968662520549925548
    y = 92457700422470317836922650040223611503801357455408530645562529662908770084092

  • 2021-08-31 10:54:47 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Xcfsh uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80328510045394863905689288840493763058769219296021810704682730038248029524147
    A = 35019493199112016997967430121397846327901937267401183124578392875066181422595
    B = 73638672581535111098758650766639549496311655638157219259407898384100775939907
    n = 80328510045394863905689288840493763058389417973814776580277523715761538314508
    x = 16728570499199988944946409436586818120523722338238559356040182425715839747657
    y = 54812227488580904807227860590237904550777017307203739586765640085949639776500

  • 2021-08-31 04:45:11 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_exGgI uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42918651511369034044542319801604500643593834817104632313801253092552678640411
    B = 105103382486395985623961084028073655560299065275029940728790519846585456655305
    n = 115792089210356248762697446949407573529557896510578608036174503687242834094497
    x = 195494593469010469737356887139305620372357363315427191881982616792205280846
    y = 780901925965449329782783617066289769177387413975439587284400945360001253822

  • 2021-08-30 22:42:01 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_drJRS uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 21562251506448157288601290409311148228022304455146158309164469935470807095579
    A = 3062870942290094931384136970027441884599862935473149571703610360665766188828
    B = 18028716213713163709795615432097960001797543932411887978101410795010091918366
    n = 21562251506448157288601290409311148228052653763103278926569308444906105425303
    x = 1415700726909134290106595350105713787721843882173110932977193191194784420913
    y = 12052463663570390789347951585655213839512261090169261849755272653388034554334

  • 2021-08-30 16:47:04 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uqUi6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7484249759941478984245509710295548974366161634083485136729654261693202700659
    B = 5351128315168352119350274627447428777906545510730811165390063177147454314068
    n = 115792089210356248762697446949407573530284275555139482435415174666338892989628
    x = 31627072865681029670168565881984773420106956238321804406814705346449930013440
    y = 43946996718382800400884975324304050954163405310017156995993430175586741977518

  • 2021-08-30 10:40:11 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_6QKLr uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 85422017448172274929989535091663634073709401035615282507951106457281465252319
    A = 71862710960672881225597932081791860482157466072513422571794698508947629320978
    B = 18665068916481203562895367879326857596090941445625287547163862836107717782701
    n = 85422017448172274929989535091663634074055799672621510301552240524228771656644
    x = 4418810420761523735986916094117191326598211673554172269946188461008783393884
    y = 31883375164028950094176552228107843868498979321153644953278834638112877456992

  • 2021-08-30 04:46:05 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MoS7Z uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29067990169442502029326151603010732452195100531863125507265296603092774462707
    B = 26381972407901835018073711570577674305855536485187954435447792796406593853824
    n = 115792089210356248762697446949407573529744087568844612042845123814601386857611
    x = 41439256478811570984164561260208271527930777380499591120669768428796241697251
    y = 42093237788671998660920020255883579071168833224063271673019433538865357988510

  • 2021-08-29 22:45:15 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MoseB uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48272000294317830381821597088340231869414102048882487940258710717509601632799
    A = 22661177931871412758608163109654330384087078551578655191116973337295825429618
    B = 20693966167089464757058637007296449124944928683389086012340212996522671499281
    n = 48272000294317830381821597088340231869362963522194560955338658407599796645623
    x = 20869408486959130503559248252852024491462106850419888827643262809375260250603
    y = 24195920703001747286636334625349214028640916515190417704233896093856594482864

  • 2021-08-29 16:44:30 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_v8zGC uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 33059300027599128601906205303882094466192394851805340486286520211060085157977
    B = 2695230861396204954697204739595261807923647804577122934786506256735873562257
    n = 115792089210356248762697446949407573530595577564081716609972073775665010232412
    x = 31954826643062678453965605605577882376093244056954899503832792180848346675051
    y = 61455033137971910729375408352390244501473598565971444557083976376291935890910

  • 2021-08-29 10:49:48 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mRTwU uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91112351163393498353096286604940148759749635635293817329761138504949770574987
    A = 25066760429123500125750314517594107033975186108919769116299072233501377059276
    B = 35912818487996544583366105792350335688433602309638528115492318314110275842490
    n = 91112351163393498353096286604940148759859734246656457411739926421008481086188
    x = 35599566031087495653197092164644912527783024116882232672085045120909588539171
    y = 62676423314745034645507854306710722824215901238732853588232592719545363206306

  • 2021-08-29 04:40:31 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_hQv4G uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58819992363697915712561410073228807870532957901516414421176377544501576318569
    B = 71013370975384348645067094602570020746208719200564124259612224640401772408271
    n = 115792089210356248762697446949407573530555127202417880961911906779181658816667
    x = 109128691597314279571097829583623544367152428357422399329290222307002654575380
    y = 6892262937527007588673646531433560009697029955760886462283077992145810730278

  • 2021-08-28 22:42:30 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_1k092 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 96927948347606020337521145533781994019137289022537949459524064128069574374851
    A = 81661908016260767785080823632037921841137278943923478085881202357655763762740
    B = 79934385077144793203266794819877662369744522808367956362696064244615349572883
    n = 96927948347606020337521145533781994019173151115080783032123445124189978884277
    x = 7640200555090777284858974484724273769992539672166341893867612088747058818865
    y = 2938587021662491798664756877741221704872036641277908453283073946284258122780

  • 2021-08-28 16:43:44 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Qu3OV uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 26222983461654320326952732378747072616716801946621036946848220926299702778188
    B = 75657099962162698057479091431971274432850246650251993035860526331056876015912
    n = 115792089210356248762697446949407573530428106113531171994927008137766652368276
    x = 25013521455770635378889401442565878947648486255814688195304463964043024555689
    y = 40501911903089708030451290776697520821642080758616956469303599432402463610270

  • 2021-08-28 10:42:35 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DKIrW uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45456462484380282234576653450621538059089697800885239382739937878449701189959
    A = 2207618485381722083643316188077188825641211115888609090334124836363671894679
    B = 37352365029572583324843781917615128294742416625938638590530449438969330188676
    n = 45456462484380282234576653450621538059447875786930606855546231066964503054724
    x = 36681572178125512274779689593349211532208301295096834829724214443109276153830
    y = 40005140304594846146201211293355969131613066612270734995459970754286612926604

  • 2021-08-28 04:41:40 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_9LPTg uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69885629431911140243371978924033633758300445001270956847695955167625483505692
    B = 94071505942511259783916898098471809807773285515399723056170688109148429556707
    n = 115792089210356248762697446949407573530024663477520454055817625799578830509323
    x = 83251363039697766671444661318693477454523980361838166149604559277499128670546
    y = 45020364420378547808222762495013600970529247074820831861739394731333742828438

  • 2021-08-27 22:40:39 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2HNgs uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 82860404667418033518127292963280402614322259155683721645135345977623326513943
    A = 52786877182438881713760426346875716511303347915938659893068191858701941341379
    B = 47589281345148785943730768772866436250977079055326058461530213652275300315172
    n = 82860404667418033518127292963280402614461930479235665618066815569663273843841
    x = 65789674368006380022383871747990798936565094614948255975538198410739541773812
    y = 50778192727645618580281502794579264576189601133353645463535206210002659097904

  • 2021-08-27 16:47:53 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uGbZF uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 95936848008807226120008698923258844857123993463502418646742432050888015012310
    B = 34879449691758137610328908192202957893970066425490324750809781201033385604852
    n = 115792089210356248762697446949407573529576190861553096408671998785207323774596
    x = 68324151775858677012235606797584765632019595394029645855698657769930177158547
    y = 44157053068217164617979907695001503105034623676611058456312201011126145300450

  • 2021-08-27 10:44:24 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_oyt9C uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91392064341431842580610790841927187033293643785806931374633663776492850166051
    A = 76879973131886364257898512679533429518081025354497501744563053771758575909158
    B = 13514316529252617535277594384475881132368535146292548769797725956510658737788
    n = 91392064341431842580610790841927187033346401901408861849442121237378095506852
    x = 46871518860595470862428409852655590288673874190886944435847829768624273197009
    y = 87015350169843913344430616254589529406652373016791702957728561515048959631180

  • 2021-08-27 04:42:56 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_rp0QX uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 32485717964070277075523231801568604688578174018567836501310653536771508121650
    B = 18171702682392505954753849562834746257091887179580956465653802750947840880927
    n = 115792089210356248762697446949407573530627593731052290014262113614078531102447
    x = 74536263724032768566294404820675281197574586859057804058421504195902891909622
    y = 42570093102230581978888079796658962339987557478226865528066920550934944623970

  • 2021-08-26 22:40:12 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_djzl6 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54018312515102579358724125626543887571816079276902231199939232871876578856171
    A = 32365773605913415635896631192803830047426533104914116038077408841970906016889
    B = 51133759996986270449366349846319218886293359349656063705622045200755813963852
    n = 54018312515102579358724125626543887571682441226789291558606171709728790067797
    x = 49646146069166917189717175492112512837046124587584978076261438995919385560896
    y = 4622710237539054816001274787696504773505255076825675315280886646648022429900

  • 2021-08-26 16:39:45 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_zZdTQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 102429165147834781196360139730629379461965450049362241792163989421110617839210
    B = 10999729550327869139594340092013999332125622856089010539529672629371828385416
    n = 115792089210356248762697446949407573530015985166244910576421250266376410133188
    x = 89820332569614747052581957081429176502016712269836445990614501873935698299943
    y = 110580652331503560424300086016791705749356671655308337635797894394035015523216

  • 2021-08-26 10:40:24 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_T1gF5 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 346167725353880950791293515952585953673886902520889994610789194647268662891
    A = 192408547225588637890941057117447981951778291931134471190714012376892526876
    B = 64289148990229283237298644696203916315573103962918171415317419212693764150
    n = 346167725353880950791293515952585953684721679010168213191354918048574104308
    x = 140216265058449022223512020931400938382029056329767967577514896706215792678
    y = 90414092337360088081276559672866780656081403027427028880750852898778674048

  • 2021-08-26 04:45:26 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Eo2H1 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20169795233815064956130481507990631240241757553642720754622539818921038462266
    B = 17002127922477347968540241810651473310190318051087396426178256386887728231754
    n = 115792089210356248762697446949407573530453701616945947924660725336590036226613
    x = 35309914230588749930599127456870611624833655318528946184429701456038313514359
    y = 106923834498949478821186928825336778124272043690738843806546295343481100107048

  • 2021-08-25 22:39:59 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_A7lFn uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 73130260129237770829992112450483990421618940156755782509679770209402550128447
    A = 21183003424610199583115388531854217711945482378421615353073712201594328972472
    B = 45940502304381256484204418440291254608919097911052973557942732582942687316197
    n = 73130260129237770829992112450483990421503390630533689951017026738723519823127
    x = 8048028044481282275388650102819062991080012519919022231202589356946373078921
    y = 8429272229624246021967433329865489088452609013429918906402837552450190674700

  • 2021-08-25 16:53:36 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eSzxh uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30584905148073601883512241115955187502189216231444569653963139501691455153871
    B = 1641138223332273787083096964731451885603936962673348975149831841710982192371
    n = 115792089210356248762697446949407573529569015898859638574400923497908308190796
    x = 78218273775240896724692751909366255855220153023353065756207216893944769057355
    y = 12067198426199278251093451463515345873054050058284790634402764644755708065044

  • 2021-08-25 10:41:52 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1f1Sn uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 41049351779161615192510191188397850579153154731699336729017736331229914100739
    A = 3463500862142739921428721257244552339339410086189183254980430506530176545897
    B = 17189936614648636333546786304397657241131326400950914720768240081589988699604
    n = 41049351779161615192510191188397850579225384898477643085648918502575652614052
    x = 33369369538217553362734830795713647106752863800164256846334064533540327058849
    y = 2057513178954588580730634169714150172803489597140057064513494342227016057760

  • 2021-08-25 04:40:16 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YPOxt uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 103303059793575890872847871617734830475983465750286682880954212440154322649823
    B = 46026812163173829544253498999797852812980909004607128913687512745352806945116
    n = 115792089210356248762697446949407573529770995599838414810105831739652492360963
    x = 104166977585307662334961903677050493423994549525598873058997415933040798348733
    y = 96185185187379719908841543003402959988392555472584154935771972780372242057464

  • 2021-08-24 22:56:52 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_5R936 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89915266628364651451794539944032255602815631321536667212331988487687862646161
    A = 41289319273490048832579924765282558546195296357516698523060664304413310478971
    B = 4865584765094878454534382752989782238421969767934979846356855032654062262719
    n = 89915266628364651451794539944032255602980953342598201714754218623892524664811
    x = 46519867784135260827121965082733300831494654475215800148505801850322204286509
    y = 73964206117596073266790347982643491134771018713912467338310208035689619505296

  • 2021-08-24 16:42:16 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cUA6G uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111066904018933544625732184589966398054263958164896118008864359694937611174023
    B = 55433514320342032396034669939393865694346524737783591144092345814441908914254
    n = 115792089210356248762697446949407573529519583772507361854832220746050076618996
    x = 57735637706945237504432454976042288289222086508921688324125306932371365281205
    y = 41043632630548800311587941237093579667285929737591268949855981446069692032572

  • 2021-08-24 10:41:28 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_D9V3U uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9768453185093342508181040971485684691620745388447402176801332186728428107163
    A = 4355828451177207709602963826259620295350718315590862031483987244993908629194
    B = 5659826893347818276342469503805113400088290769243658933367224659148891202509
    n = 9768453185093342508181040971485684691579119555891012321995955550238117036612
    x = 4409382492096036624938636280410080799280390843857280572284050674453331128749
    y = 2906300674400181804827577784794832291048908850581365355663393725290902512832

  • 2021-08-24 04:42:50 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_6lFb0 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105526233964978363159432911961895080954114966069595144440620635911080812138903
    B = 113115374042086162451932793245175502941987461308644034507155633325129236745685
    n = 115792089210356248762697446949407573530037623472704256598720532364058418965957
    x = 12717529867841273792259356879729518115631260201748251287802452336277868916150
    y = 76983000421889266432865028655962513422856279886103397765905239225122995139496

  • 2021-08-23 22:40:07 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Gnsy5 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80854634057620566673656692441966299012823733643147437937119208118742303289891
    A = 63405941711992074595376175735711840495415506388834530798904744784455541278958
    B = 66001488036927402133678807182227234245510578312543377023197594779462812955681
    n = 80854634057620566673656692441966299012753801241583180646177494780539329197017
    x = 57684755755500807664713212366180496685408516120913517400390840359532189082136
    y = 59499476646902691514053091011451423334475247743518694704982689000730884958860

  • 2021-08-23 16:42:30 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RHg1j uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31948483232094750907517498550710745471136188190519286700576925954053400150227
    B = 86552147641868878986520036929954533400253799471325545398056387889653986742448
    n = 115792089210356248762697446949407573530313334853401686892240820122963726254052
    x = 59491791525836163317666275544860317283544223669383007278686198892657775570063
    y = 57465275407007498757664106335367536444504187911364012186901110459056334877344

  • 2021-08-23 10:48:46 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_06u6z uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115562727389624965169977766943177160812022985482615155203155577029417724141399
    A = 67292927327379077536105985068491606376004742119817250520140030708331120612718
    B = 79998841624845246113385181213359921856462296636134623151357238218646087757348
    n = 115562727389624965169977766943177160812173006622041233883136708133276782270308
    x = 13768233263974410942956183760494599408067774752297836691073266954089765314989
    y = 44141618812635579523762571692170621429788257938592264227792278676338020839332

  • 2021-08-23 04:47:03 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ndXZ8 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38037265116797472536062948686417182759533944119156531042082356755408669948479
    B = 94681166983782116444491406757175062197751136076632911979360972679791617701291
    n = 115792089210356248762697446949407573530171868984683525281885514575780444251013
    x = 103199143929649871960374959557507779138104997332422269751625728183571045062569
    y = 5244716674207295911205997657346034083399539349555568118203090155346391497420

  • 2021-08-22 22:39:36 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Icjvp uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64028175840837425807269749640375447881642067575265926439034738016204840410687
    A = 1417199158519720350241729991303576501846176664427861177915550960469925657461
    B = 40445214577753162373172869772533722108714815399974095821414256959203209677081
    n = 64028175840837425807269749640375447881385954520881101984314642091280419065959
    x = 47214657001316507800289394618073258105115194915867094851489301265003420093173
    y = 19445902624364804971326803278655840112260590161603577843314946553473029048974

  • 2021-08-22 16:42:58 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_tB1m8 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 49644933051986532565490318658569008105407960106923458173325505936960022727038
    B = 12703964262436936887427275367402795657267787334994046456412853732663466411870
    n = 115792089210356248762697446949407573530239336849520910806534738057089984737916
    x = 114544961472063099430652302568917729052537404969892051718444668842275429218376
    y = 95526912390005176481304905818914715122215841453288082514292015253494762441404

  • 2021-08-22 10:45:01 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XwWda uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 107001108470373328114726349726124993866676482969924180761238155681028874023551
    A = 48736596424956659508450066912172056169744941082546375304552226843554244453515
    B = 88386695052612648696389372308712947813003615277812627917433582595769062384320
    n = 107001108470373328114726349726124993866850620951538813541324037629116677536052
    x = 77176464232150078947213138582101052355332508839228997713079032356701298179826
    y = 30137745269682104691102855785076635154107024187157180630763909031762097390782

  • 2021-08-22 04:41:24 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_mdGUD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113911549715611055233203466958468655753980732817122851111584263303368148890871
    B = 36029432353768010856941686151861270916024636355434627516022191743585805904837
    n = 115792089210356248762697446949407573530522227487346356048065525691263052314687
    x = 73053362391205493614463493768749830337248790780894997137188765354004986593398
    y = 87623897037670623088836876333849445447440467446859599411804762945151126502562

  • 2021-08-21 22:40:06 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_vfOIC uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 12449704260113410793017060684838023755733714621684269691681206793838794749637
    A = 12378933354486501662327142952568106617007399879596941317954767605969330112828
    B = 10625996378535507398437288327163536951105883053110427346934826145496023182222
    n = 12449704260113410793017060684838023755705879780068151882915269722675926067499
    x = 11898475309518408205919838921539886668885296228292667155996720144492245198617
    y = 2112021533849071299785454848932427550520292200943922258574130428013618598604

  • 2021-08-21 16:45:27 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_P5x8N uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 50339658091701368106000727041081589760777389709524020254567266236658001947441
    B = 59391532784361330953147385548596936835179848840029584715477498412628516215095
    n = 115792089210356248762697446949407573530516501730365919521805629784105402370732
    x = 92448578404533652381240328436137073583498733888676834535154731700835178702359
    y = 50967455343807865347311162527729198502856560189074793935058160402121526129986

  • 2021-08-21 10:39:55 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_S6MRS uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103238769855861647197378631131614855145742391541930282568988844298875180653079
    A = 7284004614838341632968444300921018791520802434731669489731573463108514703467
    B = 61193002353601778980267971425628381072876404250615426403132046341128242318343
    n = 103238769855861647197378631131614855145162197655681832953119687836364397686476
    x = 22130047334960020824930988736079519853072519189545984496409663091474015639618
    y = 53598232855833680168909765480786667994801253871241116641877767364529468704860

  • 2021-08-21 04:41:21 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6Zwt4 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 102152286744970233697037890653194055501015142872115906713353013789101347178450
    B = 26734848788634693414055288484825401661614410371224311755474454108274365825759
    n = 115792089210356248762697446949407573530651098316335883795149587300589118057257
    x = 75917964773193856140364288786291039869930918479438789730121313750462710803955
    y = 92150184126415603870569868328944606876948124590852832776959596604954334255696

  • 2021-08-20 22:43:25 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ofLXb uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67282521848340239631566462157616294188874429166819959158953181233872105141279
    A = 10349649122486666632495557239942376766338035862713032882027263363507421062760
    B = 66506209499212177910836157156210763507592468910911082195644669182092352282607
    n = 67282521848340239631566462157616294189202692195694669688302620430376418454861
    x = 18406612590319558457468132550529689014199799127227425024005031410695892179105
    y = 58155127881591831555041872969613210997345667792132205287516003237330660100000

  • 2021-08-20 16:51:08 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cMbLe uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47683559294400045428430611328084624153649678166489092635527465481682764775337
    B = 105914983184588207005939883434940010652889151056729726829466354125992734330221
    n = 115792089210356248762697446949407573529873014471814683745600849423203110563612
    x = 114559261029313384913422724118297917822254983368900359287175685924504534083835
    y = 89512486815139259641607252062145584956927088201117629511183251469737513902980

  • 2021-08-20 10:43:55 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0O66e uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 20125022140755783135730564461004732460390548478254217358174713834203533656683
    A = 4870013871264099627312995263466635174808517531637511859385860995467133606224
    B = 6668687298180826766610028063100207912864800012177883946968141929240356091549
    n = 20125022140755783135730564461004732460237021815564246187795066306769658478156
    x = 16591941690326648027344615650976291190818620603234534557351662279215323927567
    y = 5812582923762515592373959144618448971956392983436477461454644082571261897826

  • 2021-08-20 04:42:54 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_haBxe uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 25016112584899312394829266227977749808617949884477363124849091824930313558408
    B = 44451963301284312390919422141959773937191041437875288137373826861404104376665
    n = 115792089210356248762697446949407573530008859753055346156664859732897410891251
    x = 5190203681863308775928136396107308241260272863268784789714396438838577157081
    y = 84398737899968687465987695727873661815823886496106662505910302556110963206194

  • 2021-08-19 22:00:20 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_iX9wy uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81998462800510885458379005740743419774311621947656048448939159139327962624733
    A = 27526755815444228095834969271133015727998417520708694262142474756271718367068
    B = 72785837982508301569556536568906990155603811304569304808690791054639689253100
    n = 81998462800510885458379005740743419774417913436381311798834512090014071278899
    x = 35090856373639573766499799260977085352816121867114191586040731245976805498266
    y = 53829483277924587828146489534179847614240161979055295398532371651969663753834

  • 2021-08-19 15:41:58 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lJgrV uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 21114151932399091888730976813038200845695052856941662587128434081909489692256
    B = 35654297911732111698725718295173780482426645311289539210399876986522642333701
    n = 115792089210356248762697446949407573530518160756588231024882173949783076534772
    x = 70190128209376587217778098264225537159931644582218556022765511175350067325176
    y = 11278086821440448981286662461597532920602886735226897088280424528393026492518

  • 2021-08-19 09:43:20 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EHUHu uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92502171741051027593579214731661994041684855770680763138115241245035680842311
    A = 66326256569812768835831596091890847233000852247379065532497244941686613645082
    B = 13295877939479214601886300919286032361294026341277274167793498288285980926201
    n = 92502171741051027593579214731661994041891009394926524130071757294774043640732
    x = 7081368676458257747995634314430708203983206723616935288410130174479717407468
    y = 78211070713571497260283256423153672597286619397582054198333422476184762751088

  • 2021-08-19 03:40:06 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Kh8Jp uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 11127384347726212734344702536964091716347820041580422376244022521940495908068
    B = 42767600652324959297005600996048117341675401979208560496070745211696065683584
    n = 115792089210356248762697446949407573529625219013169791653238234220447241250571
    x = 83506515912743492036994975803407524844474504495756285066744986403130461128642
    y = 53193549014188541901649596882860584199958999557436274816608619760187570822206

  • 2021-08-18 21:39:51 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iov3p uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100600651546332290035243682554628163444668658093465320961556108020714700518781
    A = 29011364046053264982366065063674432036578149836658722295683888113081842746862
    B = 4458098654597073403838578367104379631280602879166047163582083131639686828972
    n = 100600651546332290035243682554628163444518180388297617587618439073477213723083
    x = 99575063599911994714626551249127209440399832563484900469866542240581397778328
    y = 21084783588031267152997621050591393830496556509376327308674206756844806557424

  • 2021-08-18 15:53:17 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VaLLJ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16506714180294421443079459868019127533457662724640108325739276351470041239171
    B = 101581638598796311548058279812742016634216489152253948792248812368687442045778
    n = 115792089210356248762697446949407573530000671556313724387233554195228382117772
    x = 58756459426424252436643265371574197427071607512976799267968639169781461062056
    y = 32572356723010012138254113130751007894148453170654705265023963761107042344650

  • 2021-08-18 09:47:41 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0wNJU uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35663748110392298443113548250245513137574637503976597059189206331013723794639
    A = 3156583121547053862779683283032640790801678603960003700624210231384421586633
    B = 15470427827978395368877896553493054769000075698679332920017047834079646078353
    n = 35663748110392298443113548250245513137806458115176430648994018463808427177348
    x = 6631211373456868473672382952620319753014816359750627230587231199184194421367
    y = 25632938090137458521858420776797662702927421643770257770527112020180959212692

  • 2021-08-18 03:40:49 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_0O9hX uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 36806362393295451510473809210500058601778482121575294840208910514022014828687
    B = 51871782248700936767571322582084159715182073165735584322152495926296669723979
    n = 115792089210356248762697446949407573529662467787641259041150046968844984373981
    x = 9746983195022745166128723551621145781861360005361570546379015863061975124652
    y = 70155778654568106750850725695835744866101078387493876059506023440345555940780

  • 2021-08-17 21:40:43 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_M5XTI uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63821961859104247192996013187056777421198419030812475203519536919127114352953
    A = 46181949219300625121965072771515419645836808673797244398905476558909816659523
    B = 38430357137490913347551657724529744938734165238549135432450099698974935013060
    n = 63821961859104247192996013187056777421024397745461217511748284706139976989587
    x = 1349356997639261554448982175674642030715917423796624367295034774635294845018
    y = 43635318618451383213524525716298548335934940329622206311736061409554306538906

  • 2021-08-17 15:40:58 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IPOft uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 100694845353768027417840921101535613139091097615053497749273204385319226477169
    B = 73190738521787388319310307088148797742175327177533158667582573615298459861964
    n = 115792089210356248762697446949407573529777156331188872800096071438078168885588
    x = 114262396289082890987569910043287710293274566734685344648443317154032410748963
    y = 86852149235219282645777192042639030903712205940512302456804206568668264944362

  • 2021-08-17 09:47:37 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_iYpVR uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 113111163684432312863915352021249866333071302106650381849799843248762839289323
    A = 33883700100665296276057674722096041711650135779992980397488835674450947971000
    B = 75343146386894936758231711535116952157064844938075802647007896969595549129902
    n = 113111163684432312863915352021249866333106855757113086797922872010635711069316
    x = 7627459525197185631826473730334174920635172346067074643888730610179721830720
    y = 77557728175636888540366564510854931095250970459728557913211657994281451784018

  • 2021-08-17 03:51:56 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6Afro uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 71755251861846464515761227331517850019507876746742874021420714946378312999695
    B = 91399851089426875887648639885945647986509619104995445187013740274668681484551
    n = 115792089210356248762697446949407573530420484993895931477014089722952892615111
    x = 55457603005572567795152991331212846105819781429960187797245824980046348985152
    y = 67520281357969504230567172832156525299741679945349550442648861915149678348832

  • 2021-08-16 21:49:19 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_pSsui uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 60928140067602748682095130579447706052930596785180176516580846692593265418243
    A = 51154253756980303369903161134956852114736394327742633274355199919795563869764
    B = 55203490629514910014146113350679657938468610679582157885368927846609818429202
    n = 60928140067602748682095130579447706052666542399449609405288364950968840485227
    x = 45372006366228729162722020039601562296599028346919595389742090516460898403166
    y = 57246241025742219944385927423675643597233858645897282501684754715076011954566

  • 2021-08-16 15:45:08 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gKwiY uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 49911762773401129085622716545136613286821629203889380114822655520665416128135
    B = 13147600779259203653136924651252401696611157596365435826284063474080300042149
    n = 115792089210356248762697446949407573530469664381528267311020076164579107515652
    x = 8603460714868849586598738405474450800291713816642824704463713784726939781136
    y = 90296811975607113538414489549421647624563399037510556104514804358783751664984

  • 2021-08-16 09:41:05 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XIq1u uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 1549354189344305807531659898739901518858310398787157901826591968898062410711
    A = 1064207594330532003557639272253139410013099401794743358345721678612831191612
    B = 1317690764417166836041888606896687423375221143695186997332233697140441896165
    n = 1549354189344305807531659898739901518864695702667836588646250744170684451516
    x = 1208481541364620458064762971797193396051604761390089856745422716647797628852
    y = 953799605156562308901039112028793757351281598929173565245273933257046552468

  • 2021-08-16 03:47:45 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_BiGhw uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 64332111897955869889320298373582028007655719806090407566141800419082781308694
    B = 111052349405776733576473055069919090228914675707962792867595923952907055906666
    n = 115792089210356248762697446949407573529804088793144946595513969793226103610817
    x = 35827990581851917159727393352275350937355651636168093910391207360196871156863
    y = 95841532722473437705568509911368123269987868153836191519990516418627443896874

  • 2021-08-15 21:46:37 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_fVuOc uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 72241123770711547521641982334018123786503983875421989097641958624995771718119
    A = 29347342429038483573423386980201805126807017606875121816783516607710919943674
    B = 32958959941635709509143385055773592971161318516819277449057970541952402982264
    n = 72241123770711547521641982334018123786747384607554184851129613413183749409061
    x = 58723731781903210766444605512100157170865295352126958083090074167323989306927
    y = 69357579651469243604426917191119257865617532194542366172354472569576308667012

  • 2021-08-15 15:40:17 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LwTCz uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 27297449002694089919860872456038655606029579973974002542180925073283790867332
    B = 87853633827445528931652319604168794104147171892040786714526312413236998011949
    n = 115792089210356248762697446949407573530366983804424404141659459775762150201372
    x = 45947377545573789071805904504219722379061661281876849001649593031243661766169
    y = 107945844631495221288513579181838671730670120164625870890408859387364425283914

  • 2021-08-15 09:40:50 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Hn9Oq uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34770031131188032665241706867347398009407205308314608971131166196446615898011
    A = 18011419564996066900650561425440404487411613500199089108235836209234237308644
    B = 19396808221188248994418538795322162001377772139491446248764840970860430436601
    n = 34770031131188032665241706867347398009561741317713444988518302855527717725508
    x = 6343247802067274034154309829609743303959179387802661061534658300213559216996
    y = 27731432097984321844482769059528784230301819544438955545368480192813773583712

  • 2021-08-15 03:48:07 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ZRLUV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8467267523524875540326824588122451521087409217524629152382920572635538842018
    B = 23502672751963946174053498450336267454469920207950395607491609168936007976349
    n = 115792089210356248762697446949407573530264875735227209547434228380835064109897
    x = 16852460293201911240906491096195247045088365330302158094358405513569611680936
    y = 82291903248846805899120284923014489266146703216547050885361168785474923735030

  • 2021-08-14 21:44:04 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_SfD5Y uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 97374422206058116737457454668447195846079963949450084233351156547569400786839
    A = 58428797755848777152213773878585170996904136429924298976008443149755114256515
    B = 91697197982316832246881879786425484114643176930864650947415279524877477198451
    n = 97374422206058116737457454668447195845894883629511360142911569879732437165399
    x = 47828168713409939010949443077455872970414234302424493291138631939271022569157
    y = 89572483052287681783178844392515535264882180414071097030947330935205781731330

  • 2021-08-14 15:44:00 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_SCRjI uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38633604059400478863890413350836079448638367918277232269475698278708617394602
    B = 101831634044565372655321889756200250979160371196894863354941167905554267364439
    n = 115792089210356248762697446949407573529761007246393841956959920258027599736068
    x = 96100016495788944750867323323434252793586956563093608248824013936727275077562
    y = 74109581252674845636548132120095165880582313494960511866400768199284458101128

  • 2021-08-14 09:43:23 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_hdl9Q uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 64746798766712698492109141537048918663975957120746216537692288947052610915879
    A = 24105174093865615643788578551227031962251629027213011477150319060552539874872
    B = 29095987218270367106422895695569138125226925340953081988174208824667924000483
    n = 64746798766712698492109141537048918664047188681083591005657197040328479718188
    x = 40583734475297816297869937072507745788950242064542671086655486518284167978320
    y = 12119404755778515696639495734527969952713760460510772015277982399643052421444

  • 2021-08-14 03:41:03 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Tl4WU uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 51107934596265181162448621040929876728417338289076197160859503621748098636607
    B = 40705249027965100245249848072895740613324868023199816396678603102668836744685
    n = 115792089210356248762697446949407573529753303106552691059676139170992544823357
    x = 85971997038583679298436246530620845518553962060002083549359177462635366749494
    y = 93246168620828317027924106222998856929055489905322481795926108377858305997392

  • 2021-08-13 21:48:39 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_vS6G2 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 46694302869328653220070752500070904947581862821774266872987582448225143415699
    A = 30148699608901823641524333580932619678616770730416462407961336393564601354183
    B = 21025220667669611608801212047380898838024154621875906516854718591216042601718
    n = 46694302869328653220070752500070904947689588282807000307103416833249982301597
    x = 43549197306194109327863098751287646373702669112996288528407225410997990293834
    y = 7059661159657954289567192322234438283815309394504699292870637965749068074808

  • 2021-08-13 15:44:51 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_BfiA7 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 43226728582711198244185550975636658281843570699619545576825758762768708051096
    B = 51451087433870781800220529065025219488328167359044927969393462140843588526477
    n = 115792089210356248762697446949407573529811137815679168072481795501925167295052
    x = 19514084757886643410276637468740900756004153120845098604348941450785962063399
    y = 50217607780952785165376583517014786674154565158552100256332309185332466827340

  • 2021-08-13 09:41:07 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5IFtD uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 111094420973607957169344181814439670901190921529222749907691605579293007611851
    A = 42670054062036834738159734444039540494110237293723559713647732884479655912945
    B = 29471988187777001427847010143407935247660062659320903413234753952187087065342
    n = 111094420973607957169344181814439670901561744154262649548058150296982132540756
    x = 72297413484020978347019098059614297686074534821501098443370838554882779576727
    y = 111047128930152729407167429666332670768833588150651829981287074323778147061294

  • 2021-08-13 03:44:22 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ytFYA uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8228815337190130021076482144794533347799608821910119214149767401090409497685
    B = 26453458637672085694790063165595345613318111453552322047528868744777511078140
    n = 115792089210356248762697446949407573530004134169860648883887272877905972941967
    x = 37784175510433695218946854445053542689066957524699101513180348305128180307587
    y = 34551796112564522139953853947815505591482079765943682453271405415410250793036

  • 2021-08-12 21:41:25 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_vupFK uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 9621811187307335471760916713238593517437580672945487458948426705171109383579
    A = 6089884661800239621056105434615438497783663145762434294396895681362782193078
    B = 2156448598954704338334265902258001587473844578729780457109709754390434112784
    n = 9621811187307335471760916713238593517262203461468561289191660533317324865219
    x = 8996902092882725478560646837466983205033151901706919972833607043507604008556
    y = 9141618943432713051462923289568927120819967464724833010607252878204400430678

  • 2021-08-12 15:40:55 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kgNsQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 2524101224330215597363664781963148880465091643875871100226778914837667180987
    B = 6224104386766256000046014375671708650841762214100350610403989155268325889307
    n = 115792089210356248762697446949407573529485963751790871658795042867676603140996
    x = 33834667537796352009276390523802938789327575095743675943015565593378698047316
    y = 105676339819168542587437415162948014777341145130940229405344436380763992307364

  • 2021-08-12 09:41:43 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kgxYg uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 98576169653009011283982202316459009042377925200141034340507865693390744291739
    A = 34389650295759301095138074575833272435126401401293292399622071831126103123877
    B = 37778937200405185475635358778170507317774145692423696708337054811071223924949
    n = 98576169653009011283982202316459009042606858355048187658612413745314691250052
    x = 41217642659126662956116211926151868995138895787042767137483783491948248577570
    y = 6899381491066846221947899093236945544538125523196536780107084552617000135854

  • 2021-08-12 03:39:32 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_PLQ6a uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 96530901207785701713201269675127214857634880095491397506010589321679470012296
    B = 37815570634711041144717003132457913529969160344299330049167291759555657661691
    n = 115792089210356248762697446949407573529502314082771910672095196797418075565801
    x = 39136374251696887133479789175345710942445031725724655802014192636166228595105
    y = 11042931658331685213440695285127937043265851308476732473008332849572638897380

  • 2021-08-11 21:40:25 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_HuB5J uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 96563368239825823944180519903688526171423410904073850934045399129818496396639
    A = 89770300640932918493539720353642630750523402939497403414234165068054303621509
    B = 42997446171192403906488518255137665097026164707654472085588418564663710793442
    n = 96563368239825823944180519903688526170867201901478822905452989447959834299559
    x = 47838846276237397117292915329315299820420983292370499566425831877130931454701
    y = 52947048001273742877590790739264275499253075129069002021870810594569972573504

  • 2021-08-11 15:43:22 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_EHeZD uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78376087182888676773825601012396411033944378937181654944655635585076672340711
    B = 42489888967953121298197372249187287487029272101748928831871200354385998780787
    n = 115792089210356248762697446949407573529800742347448729844415338611898143822636
    x = 4357043509573699576080569008485411248416253951016670138496485507363061122562
    y = 41270307182987630518547217186467593034080578515083680752982210233169596098096

  • 2021-08-11 09:41:16 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_QE00B uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 81139659653411212619426947283955163109696470531752220495449476401670807831543
    A = 76873149720009313652620912048718881622961812087753169869659542115346678605774
    B = 37873662329304036077737849083103187251217010141388878948131905205134096491152
    n = 81139659653411212619426947283955163109155493412441282487342487177596571455396
    x = 25963934232215927268228038849667783379156367003935714874727871045580964077777
    y = 14659456489829166516632379521020524029069380380410181264210223605626000158740

  • 2021-08-11 03:51:49 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_6qTMK uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 114250067861886233797542002573666551592865072161863471157212574414051582276791
    B = 22142840245825960896174511810095210583955586401143683219229618659336585319926
    n = 115792089210356248762697446949407573529738451481555642058228679709898418135497
    x = 55620039043145884270479775851476359811205599004035513554516756886174467259980
    y = 46262079128342181735824518975996601677251876105676561108534197643922886009542

  • 2021-08-10 21:43:19 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_kdLTb uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 53194301717748265735343473911983154660828960408720066520650432937883340027517
    A = 39726458721897114755496486781400357605944298180277409384762747827121955848990
    B = 18191949547125136759597145968768176366990847862787155479534483398315756058528
    n = 53194301717748265735343473911983154660867385668925817298996996828559135527047
    x = 6227176967240367004193643616673276207389834431595094998506059349455218098489
    y = 3739078650217398319060850473034539292507451788388690336388839858349519265074

  • 2021-08-10 15:43:40 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lBOb4 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 103439684404912830337099719300428196657663408433709626301677361174004198112663
    B = 61474963735023402072072263597257034054254540286887912933691183922523318147889
    n = 115792089210356248762697446949407573529559977065202773510425060025510486087268
    x = 101796928201951987795758287593146547301772905530053154772441875553634331580358
    y = 21571398885550622498319743560236263184641756489850570099539308992122955545630

  • 2021-08-10 09:42:12 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VI2ZE uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22296335947918677325434545897461258133459160540086505215416632342657226048303
    A = 4365353758317344424096152224409312481660826557127355934766770743020415250361
    B = 16463213011197915516123715332388780931450880190702869916662118521538124688651
    n = 22296335947918677325434545897461258133262012391491696866573849453074169524172
    x = 17441545732709782851295669078344168510715370167767557397769786562271229171876
    y = 4184854741598848766288696180615210228926876825492116419288573703936378904270

  • 2021-08-10 03:40:30 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_5yf6Z uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 56755560276925248998870269541739252632603383656499661792009860418834631807065
    B = 38658732442624431462613865001599323502914126316787686283568496346772180762191
    n = 115792089210356248762697446949407573530606854987769968578329222120350356827413
    x = 72470890766228963196489193727758739549081222116227410521302981484880550352257
    y = 107053903129268230865964279070742928827539085771086866557152069101187758374614

  • 2021-08-09 21:41:53 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_S6cWt uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63506307966876966990637816355897814536803504035479420743251980864078843991061
    A = 5445456291018453699354169155280651099207232907222182959015609387039600573959
    B = 62626643420441590972114210030160274544763545116625804581763339872277848362465
    n = 63506307966876966990637816355897814536971489216673548171444669762058533136747
    x = 33429971052476252577177251369370780114891871005480241706164059693911943376206
    y = 39742088784447751620338119831958877746569745355041449850374966243167633044200

  • 2021-08-09 15:47:29 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_LTkK7 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 50949027042007762497189124241969765777420455191308729827492271173020790550137
    B = 45754025196616432162224934534071294172361648544464295910104977905682524818238
    n = 115792089210356248762697446949407573530452949591750782062811990872837411512812
    x = 79017353563105277047440968105753901458497226435252046094487130807352132563342
    y = 21266083765906682931723183579521627520564004656191730127441881078269279841460

  • 2021-08-09 09:40:00 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_HOVTi uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 28731726919939481388535741457213948411671590327870731119268476836291769520167
    A = 19635002672528892744489455093335045797320505849295999337994736107283992539181
    B = 20421877478337938358246203310494135392060226627577329669961538299030313054862
    n = 28731726919939481388535741457213948411455325303517765575574342480387312182828
    x = 17021319714031917437419774252573170812296740693942256841999673299552103949162
    y = 27062881135435997068065885113888884337288251810775913944521833910042982461202

  • 2021-08-09 03:51:31 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_wOmeH uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47949284095389772674307647775267495168669783518238112924360853678134715895464
    B = 7277198163494251179467577446331163023436685945090510182314604683839071921118
    n = 115792089210356248762697446949407573529489395357767233685346159620267690253637
    x = 53765855075980214985180735147135707000213661242617592339299991979552849607714
    y = 36941138566417934768155727535981297455038327573136288577904168902700732403756

  • 2021-08-08 21:40:54 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_0FiE0 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31863372840507039253554111316893788307053802233528049130014050336978209767569
    A = 17841916764355550424466500104847250183696234819290665169516643895102841434688
    B = 12511304796817153978029576257783947205243598947937386586765190306258187389573
    n = 31863372840507039253554111316893788306803680443331052408358187267602646045937
    x = 28689149204230878308441134308736186403690267161713083812999314008836490280010
    y = 19205474657399897765401886224569175766594410662818649742732296290588422704704

  • 2021-08-08 15:44:20 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_x8ekf uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97266236214550305141864821394208581873753431866251789466473674950353642361102
    B = 78160651861464187488158016038005937012427609343076137817578489893617215811236
    n = 115792089210356248762697446949407573530079889509757694032220305658378571447868
    x = 40639361392043859883459945819132421841264437265856779157273920286917091918022
    y = 90069984998680285978021268437476922450968220412750926593657083076509097892640

  • 2021-08-08 09:39:54 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mHNcn uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88468529732379714398344197630978020774782238512515049436425168595773653323947
    A = 43485059428511547526323504218838927674679162800995079427913003374004558638827
    B = 23074608892972485310248612776692817853517112931368368030717707485299767896139
    n = 88468529732379714398344197630978020774646790045061187423579895480843251921044
    x = 74092370545775120430679815022641846612128829814468382484233691458120864316065
    y = 3873354005175900373495631806290616732257885410031261796092135931409966186928

  • 2021-08-08 03:39:38 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_IfVHY uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81171463090045319220587272003323722802406105400510700650531624618459707893569
    B = 5865871325021971416779927149193827199026410522532463875135177482172000450162
    n = 115792089210356248762697446949407573529822956655596113483836022681016518953621
    x = 59718384364255077398242802332705706966306738952699396235308894967410349475048
    y = 40681698983679043538705547040049245788347499334843939435264877317237844341004

  • 2021-08-07 21:44:20 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_99yXV uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 95455590400988834687782757742617355673950872825711471009812255423756440538949
    A = 61222617125581303787011381954394132341307394579755347745442990207637007663670
    B = 71158178268598999734160187392385196306980375474715115019858064495760498206219
    n = 95455590400988834687782757742617355673950730200771745504269774475980412401109
    x = 89718057607830475778204654684474142385432738947860640231079848616287420158226
    y = 39397246508084694608911936366980453461001313127305805360976974354984156752090

  • 2021-08-07 15:59:44 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Kuh18 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 93187981829962467661581730200740405081382195420665980796931111385093667618192
    B = 5116577395862758932113659787325096443794678244212684343048245887222398265001
    n = 115792089210356248762697446949407573529953654804556248427789294547813568977572
    x = 36608197460607339153796093391113839945842177855604390792372459017592065425329
    y = 65415268732339733620765873302472503634621366663552320673053342892787637168506

  • 2021-08-07 09:44:52 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_tmgYB uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 44822183429267935569861873742852680259730140722832831101211573650563856031751
    A = 37371780295805203655904503485882141809810738337221091624680560939176679291385
    B = 32845272476068093096788849952724343643951895177664232323684090206893128040928
    n = 44822183429267935569861873742852680259915335714983102974612416811429776483436
    x = 11732999497226430289195516862199476364664368057440323742238670375529437681996
    y = 23397704115656049335963989158189596462623197325717643916549211194349820099080

  • 2021-08-07 03:39:52 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_T9mV6 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97544762436787744897940466041690803469473945258217969690729646453148628895677
    B = 75010077944458504290386571145444533659352478461307326400879143266264376830667
    n = 115792089210356248762697446949407573530176071982303139553691782948805322895127
    x = 13114871783915539733484647324671299334202136076130883877033680255021190913811
    y = 96043939336670485539967628911369261697480609845845654481511075561805387752728

  • 2021-08-06 21:41:49 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ucVU4 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66188669152675137249221598373972869505890090158801896834947147674862783745931
    A = 27458631379481970502923536032446367277250983868816047178792894856332439548692
    B = 61781174966444277873486789012029314077916716567510854982796226553646319446168
    n = 66188669152675137249221598373972869505442629898344861438199358577721448704701
    x = 28894016469345305347945078055277616036927170583461500806837661015432451204621
    y = 1747275178411820820452821155170464761173913538278178948851697983752755376850

  • 2021-08-06 15:50:21 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_FoCab uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 34112818770595245997952967741485910856485646264052551688854727879865271221941
    B = 103319118654813209092650424694752003136039759918080644442726078975477074581576
    n = 115792089210356248762697446949407573530522197326330123437987759147672575540732
    x = 69107764646971234125536422843000801796840913212787634093684946928920655463704
    y = 62578328110797437962796074458160825445969906981944104667190845719844891692658

  • 2021-08-06 09:39:39 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mm6ks uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 26052860125579306121676570759933747822338597945131987334640029356061985231043
    A = 24700361047228418748676840161374008766422436356998088547807203842466753420635
    B = 16531855268675618108566359832528667965675579123023198687960077350547229817130
    n = 26052860125579306121676570759933747822224992838997934864011426329462774106836
    x = 14929810184106256752719819836697711060094545214715332777784323024060886972755
    y = 5368570262710797392935770532613523701627890544973074133592022901016672067122

  • 2021-08-06 03:46:04 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_RXvEA uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113574919076074614002495768712830272736136016695671187041982662205521353884680
    B = 108053959554634016402769167209261169487698598948504435971298997122787705380062
    n = 115792089210356248762697446949407573530158530972744937528422288106219318785871
    x = 11214915847810790643834710955361177107930755612894556228493879100882479940265
    y = 28710835888986936517349993898416498015078164164765430936686048111190391623252

  • 2021-08-05 21:43:49 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_B26aq uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 114121780717546537811745568507963106349488212089536418519582813355175278686031
    A = 75356721450864723796994600840440482827439531090366994243736827680532518392724
    B = 21726934615802407585153504850148859260359870430618316181044412458579936469701
    n = 114121780717546537811745568507963106349508507661929495984933504855442455795523
    x = 51808497632126423974958946094362789057198134495838547124698848256799480597121
    y = 61323663674134794110127887128677914947363507458742897876371198016966817607018

  • 2021-08-05 15:48:34 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JzXf0 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 76232244085352715818028207122611205925881449940413398305485893827906452112938
    B = 68866023885560673217567245415590494408193705255931079045864240072721683679810
    n = 115792089210356248762697446949407573530080888096048776423382909635533390109388
    x = 23430052446186892663284697190134551078211842413332991804279811434466933571173
    y = 83236624055703272729673404666333066765448955579985682590974459396979268961118

  • 2021-08-05 09:42:20 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_3snOS uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67903162157802385714764349827847023361343642203059948669040855639663486249471
    A = 59416052101697537044264430522804394152640806589106807022546066723912263605728
    B = 17581254667282261532013921176829568155368719220429144813090097305625056391463
    n = 67903162157802385714764349827847023361140848089399096408181061953653777803116
    x = 42268283886146356760618621512256468012182258395256580967604656352107108805341
    y = 24178566208559388934701823646656325652234166090146822403373784597983529607676

  • 2021-08-05 03:42:18 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tPPQx uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 102414553541427696885693230754232468446196921887058243561085310829245969948849
    B = 24429105559106795700089149938275016640029189596097515905726315260491103667158
    n = 115792089210356248762697446949407573530358606890930092438397365705962140968177
    x = 63160157289452749429322164173658144951434177901029744754227315966995369728007
    y = 10684067356620593084442848034498925527339802533304545925930054554141842271900

  • 2021-08-04 21:43:06 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_urEhS uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 114438970847028778601117485199509778308275180322561986973449253926974932404263
    A = 100286983129428306207323887799670359688336814090561863329164193009884001452362
    B = 50662293093212245686905425058004500194305550562548012826967661317989715008145
    n = 114438970847028778601117485199509778307867689364524619358862481791002114824527
    x = 30647468680380211783309306645651561341438638652994953349271485053008535190985
    y = 111965378205302068261966227021762751439966374682769926431008607557582574090734

  • 2021-08-04 15:51:45 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nVz2w uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 83698674822286511308999325182909966472950878680458304930420610541146317114273
    B = 32800670241928818921837967407484071661649335184337939239381915368714315754103
    n = 115792089210356248762697446949407573529661280805663499073337654190946572581396
    x = 80522970725115849707330382838874489018264160814797694304504811379855268908704
    y = 16751000964864966560195903924469978271346682354619470724320458795175294117798

  • 2021-08-04 09:40:11 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_c1vZQ uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 79239869948491761208735353617547282554970849205389548062193236407516578276639
    A = 29755732178091617194149355930740482386089631985177140633760038155207183610253
    B = 32188354372721141407732040560239358008461772107994108689077237247951740727948
    n = 79239869948491761208735353617547282555383664405167879782166126944938087974036
    x = 884453467166088098939586308413140070675383515827709899409584699645309925111
    y = 32071603133509141051928790821423702059923857053950114369132270618867595661822

  • 2021-08-04 03:40:57 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_scer3 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 104434877464643709806767330951854228427904397361825793374405477651008671017549
    B = 65100752514628634528365804817436177115395618598505560292427285174454308709632
    n = 115792089210356248762697446949407573530433427266487074445833556960881131322313
    x = 68215903240188406531285669491259180480374977274477716560283247599778343537196
    y = 11207681564280576250834323208735398770632108067494427913436791694188065715424

  • 2021-08-03 21:40:16 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_JQ1xp uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 32628273808169317760717728324399444813630109712694626889354087336323276328267
    A = 15168383316959265594665314804290548064856380220623728580541490652629750666181
    B = 16198582884854828007525774939463706672888097840582055189753597383625103843431
    n = 32628273808169317760717728324399444813476509746750143457619745232424275505363
    x = 28816455045119964788351394839835520588311471759844242738841997564676150450877
    y = 10363715953693894669360171064007180164355403516365508818892947646788780420426

  • 2021-08-03 15:42:06 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_goqcx uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88524554117269204431086145754429429209633502581518536698356293706297966082628
    B = 68003854008486926750408807503318937458182106774060284625761869152068240647765
    n = 115792089210356248762697446949407573529478131617867039705486383556966954236068
    x = 23000064767513877702851773954138189809594479244898424767151225665199267442290
    y = 78219785769066874497911167807432170061461217534357513534300478824150983611526

  • 2021-08-03 09:49:38 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TZ3MS uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86067457353349896593249404048760337413045657779238090582225539544564315245447
    A = 5361826871538307630584398504789431976576965518511994184345367899932702883427
    B = 43353883574543321716040451401967777299023570985064796410962733942105074458492
    n = 86067457353349896593249404048760337412676030303090766882186651044213371059428
    x = 48388791797853492862047036633217068489910326357152512890885395451030056742628
    y = 62930512256516263171153884371705843239313455026521123641351676267044871247998

  • 2021-08-03 03:40:07 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_yMM2H uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82418817340129684225878107367132665733269983820339670556350853062693100915159
    B = 19347830193967052000126821316825881175867546509868866421164770970306685126546
    n = 115792089210356248762697446949407573530153449300877442097830210916973151453151
    x = 80373840871031048020654687375059836259911714208417104710020033409417718447883
    y = 6585485868551398786178236466925631313563331349270536644370995493363296122272

  • 2021-08-02 21:44:19 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_5vkgg uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84101521641212275511169203236242534146074166642171963481316516039740583553591
    A = 42619650499872629313433840880100855939881063740937752952104271883857284331169
    B = 16541131752480155170967470229163877497979125568376583545359239757174290321824
    n = 84101521641212275511169203236242534146327502378125061011932634131207335770297
    x = 42877558962088305600279456346831217466977406928233720920837527510360035235340
    y = 25327372559651091788509586203519332995557684887818177818061533178101184361246

  • 2021-08-02 15:42:20 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0xCr1 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 35076017404600515631728205140401430342774368229545036898130557102876923183488
    B = 46678598588040360515239719810561271520438675585724766733826518791840750810748
    n = 115792089210356248762697446949407573529631613330410153505928527874388802174652
    x = 83433460874684011198852857182696388583193488533561990200255814179750663442115
    y = 108512416469288085677682520449088301088651591475959316926209187368202225819944

  • 2021-08-02 09:40:07 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_riGWb uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 19424540912871911870856762564618639339768056095563126870271976006021551596587
    A = 9405224620351058523755075542349789428323284196023329492774347897987480192466
    B = 1582049217880780248903361518834033963573762903358434217233533523229380682247
    n = 19424540912871911870856762564618639339624274104697329637110265797617828635252
    x = 13870067119991155543641962326631999335331706969022154202853346870184438443836
    y = 4557860258370978461051896352490717669813678987227499487644039023028640466800

  • 2021-08-02 03:52:09 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NGi0y uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 65604335092298965021944751841276016883140052159370246583957650026119692902332
    B = 42254347215412635654617334021351790737504457490481462842771873935015203904196
    n = 115792089210356248762697446949407573530344150915681779638309162855036998196017
    x = 7148736280165782769841769017513201567305056311643934541867706381970689169306
    y = 29870203857687664219612966712149368269633753119403008257082491533967626639374

  • 2021-08-01 21:43:07 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_U5Qu9 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 91103153314578917189014732710793125082739607373159696652045882742922048076711
    A = 44763303883544376257702453144914463793652868215821307107474314815507589752995
    B = 84714992961855748565281658770688200169381665662022214505000522678969376033173
    n = 91103153314578917189014732710793125082370281502182451037995031303481801307941
    x = 60668880309811049506894305578511590250822923063127650729538581081698875013283
    y = 9675622969979808237224233420901586618124005272012972068080854961225447412886

  • 2021-08-01 15:40:06 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_7paJc uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37364153692535577393452479740675866140844444642544244081061490279260866069884
    B = 88369698360367202264799530657834893830920600667159104327767791811091190548445
    n = 115792089210356248762697446949407573530529940382109914894555440070946854664868
    x = 24541063824737297538372444527949324969622070920581626334783792216822110004697
    y = 75614847196786681689520456024990159921805964327013013080019162035904998084074

  • 2021-08-01 09:40:19 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qCqr2 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 41725593933870739127946902561964126252024455435865588535376791327799694252679
    A = 22710748576597487618480166386608406905857475076690218846553212612079323962966
    B = 40159821223131415633636370209207130647109592154804893067520089758310536345617
    n = 41725593933870739127946902561964126252014921270419114674193739989469906623724
    x = 19405659015402381571041736554334248165899521694713394389404492115242587787422
    y = 5766361091644057684713685520577624347207595485082947103242621416913446081660

  • 2021-08-01 03:41:35 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_NFxE1 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 20097194992822441006115723568997806091836204484293844254160974526057339511949
    B = 55725241368242914874025291787629967106415383620792695733395179523457592386910
    n = 115792089210356248762697446949407573529854137819299060565968544150905312428247
    x = 6793305102511889974768077045420747805898710485892219952406706362849463017531
    y = 112575155572998820388086010483086425132764535752012257856152423279889432008970

  • 2021-07-31 21:45:51 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_GDVFy uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 49356790832660668384891050735453779729226833225011331540175837507013643133733
    A = 36348362872159553336267478499233397202440871269746308562033857220595304842074
    B = 1158567809488689522554910792728624546869339812960934529642133136862345668399
    n = 49356790832660668384891050735453779729034015899735112100243406005307157558041
    x = 284583173652485889075380505375412193693666169490450969532448726243819596204
    y = 938031815609206983699783998608747532428727174474174685905661690986375179848

  • 2021-07-31 15:48:46 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wGCLH uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29925356356724028506425438528863626090393425109049235037012642046537706357035
    B = 84135443782701993506054563847639524522991498218041553732710562464281777107172
    n = 115792089210356248762697446949407573530163972201606428856215348121985258711852
    x = 99863251350238418087834949381126042272478766549238034769763215110352460382430
    y = 14042257383664701762218094794843620164251700279383071587762596555378744856686

  • 2021-07-31 09:43:52 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_pJVkN uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48516797250550753287801789368606041213671470006495556511995540207350992081447
    A = 24991799920463092740774420797264064071806725840761175403927003992881772311516
    B = 24059873176833119952207412084700667633798396585865582989768464702971187063251
    n = 48516797250550753287801789368606041214007624974922424555141625989517131036052
    x = 5728930111927172494504273083342872390540879548410436446040968001116081784206
    y = 32143892284744146298330925851414229086371884557936210143313900171631956788308

  • 2021-07-31 03:40:29 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_FcnRP uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 881903227364005371668746419540470211773696625848061187812919438065380457571
    B = 86074936316166389341819647825631403688372349088222583054281195735365359833531
    n = 115792089210356248762697446949407573530278385650539183886912732996898405440411
    x = 108826177647402404348692182095026410232522904945943461958095421216000493663976
    y = 110140718854294447077096692419659971256072133179481135770520245681932508867892

  • 2021-07-30 21:40:59 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_rJzve uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 5060729100241145479696082881004095714071935980132465328182149843329075975651
    A = 478970413135385301801181379212365357083963683517578886779385164652021751789
    B = 1422008574660104314804159948539424569883111480136571612669444337032769249518
    n = 5060729100241145479696082881004095714071920466832530783294743467353711960281
    x = 3557614435727688698504869118098787978579751665386197822357456101607998713194
    y = 2763642824233494097187433117096765564830368095149794457857864662881862274050

  • 2021-07-30 15:40:53 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IUlfp uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 101271207566300706037518358456817712372399263105866066717495586535228475030449
    B = 8860555280309777030474767011793885190964846291040837011377221199914260638293
    n = 115792089210356248762697446949407573529922851582457766714187901027952754593988
    x = 30649158253704609132993759237173079962056295463939202394001977403239577865992
    y = 109298380484902406138074809819898462681260970472976725203199345877820357964554

  • 2021-07-30 09:43:08 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_NYzTt uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 85892976527664337860353414504293480769513338844850352579452810037686513970231
    A = 17930033298860897320619677407342331155968382230898323104653277534239514683456
    B = 39315587994560763633427555489254019857229184179264124525442789149424498711722
    n = 85892976527664337860353414504293480769009470537892915317358231006995533329972
    x = 56760653994878264501841853314354763680408203726712604811340631791162046801221
    y = 45558251805605615013553310174993502480816540521666940990385292961274670644836

  • 2021-07-30 03:39:52 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_j70my uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8309716545099460087878476698673329186481226299551284358032629357823146738067
    B = 126605398046675965616752305387385541652892911571724459083816628771397219539
    n = 115792089210356248762697446949407573530180383145123717706105875737384886053093
    x = 45600974136890101883786800540635282662098513448830211259505183864459468216633
    y = 46566748193666918587856744965650468470287650811336470544427651858050190714564

  • 2021-07-29 21:39:56 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_qiWAJ uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 62453078789405879231690561575026674146738033971799397878235749344624623409973
    A = 55704707305677309466892974608342274173117540011718399909960775385292868654186
    B = 16089365491820665893020708583156862090985900001286127932774252416882241844155
    n = 62453078789405879231690561575026674147010776019624967250339431733943566553767
    x = 26013590686303760295777229194168661221968627759104229431727697186119054228684
    y = 43499327848012024065016455382168234975335278231775185664335595239324267148190

  • 2021-07-29 15:45:51 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_1HeYQ uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 12907776068297166234184257098195000609409814117901741013166350597705146854953
    B = 25608240472688792121727245844328211850351799957258642777847989081780872011750
    n = 115792089210356248762697446949407573530287448484254101949188101134645554574908
    x = 56881694369999335958759527894047134221149863736874709045965723429143890398635
    y = 70196550928411481453273090960083467479985550961464324605603741255096086353308

  • 2021-07-29 09:40:30 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_GtYMH uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 109417636994531248071625083951448075856682928285284494950007352785874215163251
    A = 70258172759070368869867049196820578199190933377611964391361361644985689182207
    B = 71286247568045627515308969472767327001282386908350736146735350335935340169639
    n = 109417636994531248071625083951448075856259678414072232221226008493513317429796
    x = 50688314208088120316586722261183718883787077442672870917851883089430502564625
    y = 74980143667874826052781029651291071197661378839912201674314426894999673791914

  • 2021-07-29 03:48:56 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_OpucP uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 1964747575698437041159745613077772913554553578727901549328541359363026622795
    B = 10168677785548234888295308933878914747662339173451752034802643680262860627729
    n = 115792089210356248762697446949407573530175836644331752263972269309383264930867
    x = 78310658491364727846971997562789854090179967113720349858608338116488226441396
    y = 93769353093210653033644802446085029317285805438170350231320270809246789730150

  • 2021-07-28 21:47:52 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_RJ5NT uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36374735923625869222791723310803997503043516724374468258574034428262594505567
    A = 3578408160038924271981636806932493471652724665997656184866767779341292615891
    B = 640170257148848855566922306105740137852449762003889402399751517060483971376
    n = 36374735923625869222791723310803997502931717547438729674193270405160019813707
    x = 31230590309442054177400276047397906499680822829681847690677209500128786042180
    y = 4442061945784272203356600226896588893174776852739931465385640480198745569168

  • 2021-07-28 15:54:53 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_x0guv uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 97821820686652084071086937517437668988339764737180163946116775543287997904789
    B = 76604854860991266431408549623651262212709506604888214351669642395963245323582
    n = 115792089210356248762697446949407573530496334094560269495241544476404075585172
    x = 28885972385958644838483905845653102661759636592804375578267730245963837729048
    y = 90562900305944123945845711046117085932689504958253643878922397815707490379732

  • 2021-07-28 09:41:30 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MpuUO uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 61965985934499156322540697456043515989704853135851428633424297643146004553471
    A = 624776911072192673506852251700137741829545302172086658588838230599897116282
    B = 59877730901202948944249744035864921509332652007788530935611775862944818900125
    n = 61965985934499156322540697456043515989623421077154880618206842973227458846756
    x = 61904129777027465134903816914790322280619661558639589234679132000142728271045
    y = 56093189855746117671377372622045135436605403401905352397494880128260698697916

  • 2021-07-28 03:42:17 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_YY3NX uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 42430081821251394196101550498553519296069695675728522358430173384523621992229
    B = 40836257255883775780706509139136537429414529059911149858235619586864201001003
    n = 115792089210356248762697446949407573530032918696869336186458916490981230721603
    x = 5057027590966604715038658863991161479630696923947140249350342339191341726221
    y = 105233360404879165290188692176609578357405823243882055409527156752826152829262

  • 2021-07-27 21:42:37 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_TPfBa uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 6248030864612610597398054766271157137340806720618396825677601692419794345459
    A = 3997331777896628843556710767217536888647306989106347217755862012242886290899
    B = 5193925623799567985794490630493340206561502511873459427394176323603110354570
    n = 6248030864612610597398054766271157137452934703837415820217599904492029012997
    x = 6124710564674804704455524045879995935205148059453950187457342549161836776001
    y = 3204954207163732547150591269070878573319822958817956340404589582560794185330

  • 2021-07-27 15:42:03 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_gMHNT uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 114156185825584272394680527118668764950450074258168485758652062685270594231087
    B = 37493549126518266664434741227945174228501806861662847899260504836075299679935
    n = 115792089210356248762697446949407573530270783895196204861881402908918570724412
    x = 64805245632958972373352487297910287343610693792728677628160113229799322693021
    y = 50675911206450074807652135718057366046817367997883316069863848446551646807208

  • 2021-07-27 09:44:04 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TdaUS uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 97734516954182513855679579592826289784483603209989611160386566668621334551087
    A = 96392128303700016464344175132589170351024739230236994822908734235647524429057
    B = 93988139147811793692591530173110851266855103125173144098850705653561655371739
    n = 97734516954182513855679579592826289784823370586004633564436768066815864859788
    x = 7112548964819119978923424555089347350465406727075185598284193319638108112780
    y = 27553431749676832054937834891082580954154022445632621073640731656587781828558

  • 2021-07-27 03:54:06 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_MikMA uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 95564090585414149737298862105149948938394654449309658195271908107986172053748
    B = 7065597739817563190550454359148913710727248956060712916282693209517632727337
    n = 115792089210356248762697446949407573529987730266771451818963658956824245135131
    x = 62116015119949155671631830822618490142617231416486743883548510346226108383926
    y = 12271158890416702676744316608951138380091710833778622035974982780348055103762

  • 2021-07-26 21:40:13 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_li8vA uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 7744218596609423521197659300076814684981227008640294127795274291453417702587
    A = 2596295335199138791017228774404143476833064478292604555918490462810359119535
    B = 3511075110227224296201028614402569829455118320638808610849861669126547442780
    n = 7744218596609423521197659300076814685042428860664907716286584714876215729197
    x = 4756022529624582644440121139561024290366367395232501043502325546380660502439
    y = 6475207384541612938380486101544502232917606737651127218701612126075939461888

  • 2021-07-26 15:41:47 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_5qnzi uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47735461823055254498141974264190337460989652892267047021928757500538951391408
    B = 66792986262253968387322381185598500143236827040294417114690453905607608350301
    n = 115792089210356248762697446949407573530241600954891223791575226924493752321556
    x = 74840759931729468205427202197273902226622200327655689073012070653986497329331
    y = 39930769998712255982244298734606752992774340301358686058675215273621346659070

  • 2021-07-26 09:40:43 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_3O5Fu uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 16843360332006758220133418053434614367994734807858624294942346896879766039571
    A = 7830902748565086404235099281644224278548207886964638471307347416243616900186
    B = 3886919724614900116038459294770980833593778130341286749543761496866366272409
    n = 16843360332006758220133418053434614367890670737274307275837011475245615733068
    x = 2705055885382356358958599846300562103528719457143761271561547130955748207363
    y = 14140910710243234715286931327107462634690998251042292272918605559356269484876

  • 2021-07-26 03:46:31 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_MIm5z uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3525334820823543043707992594064030668136703039653212155473619331373715687054
    B = 59006624502557634195471021606354400230871908584000180517887712668930083320919
    n = 115792089210356248762697446949407573530079292407315956719773086328672775795027
    x = 11681939249304903883195256607276445418793097509176522036787181962499121173752
    y = 41941151294575701645483738319725789057320084068646699224055970978414860327620

  • 2021-07-25 21:39:41 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_l9uin uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 32728122904064181461597670395870825781729727657506420886089308833912737056347
    A = 16377921817148364569241781729046207518896508175585657680834086210328348372362
    B = 32672310535235690685080550469311279853694033125170724038090520514394341374001
    n = 32728122904064181461597670395870825782077189442721991720103736312311760217239
    x = 9767572885389292642904329386887361623470599725481619625415314431144963558232
    y = 32261365838124235338746041808026280049268335529905315138608890266818501249550

  • 2021-07-25 15:41:00 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_v9WEu uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 70880379057254376489516606314105400862356070460576150024209067423943765674523
    B = 71120358636807536138674452609158918070187471898041150175786479030288913701289
    n = 115792089210356248762697446949407573530212934930155619000230840999789839290668
    x = 55807756856178288110860954157092764489930734518701078644000063212478415631728
    y = 73616380689778000780825248087844952425656937602819001495349592046681808618056

  • 2021-07-25 09:43:02 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VkjSR uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 35731766409438207332248947089484898089855859557994413557135855511397366937327
    A = 26703661050993071962580527645944598359011963673116027501019291833604620082724
    B = 14559752313215651667999509821497943482279423994588310371675399919434288240280
    n = 35731766409438207332248947089484898089986851101421730502640040857740841687564
    x = 4043913546725292080285942305492020223895441247845739683604718378430241111997
    y = 12924524823349978553788292842829314763018125193971887806228396896359922171182

  • 2021-07-25 03:43:36 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_W1qzC uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113694915879723528181456157820807811897087173209047521687542051711854330564702
    B = 17957052708644033354026189923318797717040760189939447507918094877280301521160
    n = 115792089210356248762697446949407573530420600497195044770125319716221396485947
    x = 3320147951325835152794555013819116694377577014289390390403624252894912132362
    y = 70220502558741781930149623170233341416863832079028978001613482150909070287224

  • 2021-07-24 21:46:55 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_iCqOH uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 78653896899402213764658311505686727384388928745556832800525136875567485894847
    A = 39020154275451011908984044851581725180458069362850163080922536889944250648315
    B = 4727382439171623290123972505057963916202999736684317552464800303193560227534
    n = 78653896899402213764658311505686727384222610179439139293790044053403881766139
    x = 44710951835488399057544370130322496289475705354552967646288571364189747187578
    y = 42531257648077620683312496025359607088227885347848580673043473845007857614748

  • 2021-07-24 15:39:50 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_MYoO5 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 2120689419147051564032518592828918192505728691822880007105972464475445163811
    B = 35936855554982820988891887675318046525886099160031322211743672928963801467799
    n = 115792089210356248762697446949407573530031410762189029520937501869875021883332
    x = 104672399740522702736633626263640262817115227222691161064301330588154293856544
    y = 29389656413118851799404412026524848839547150170459964798643412848052223335254

  • 2021-07-24 09:42:12 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UVDSR uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 101282967131873065307701939461617682449344461512828584144605466430026439971627
    A = 88112557965461937068590432363118529827446559144025511824578643919194125127224
    B = 13840960836612655012593858963146137782026621239739625249838183486604920102836
    n = 101282967131873065307701939461617682449193611226779423248121935457367749978132
    x = 29082465631080271985228803925863526928373581654721878542459112944774254930077
    y = 66907318789249751913243858601635798633256364113133804355528247114446039559014

  • 2021-07-24 03:42:14 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_n66h6 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 82414188610939234379177640377630617226706912213026755178306985867330364488338
    B = 26754710786179561420191301180310143929591158195611436592484427316744827875338
    n = 115792089210356248762697446949407573530172900433503760253537591336967249888637
    x = 104362249474358543005837350559142172279460005073848154500554141750343294163941
    y = 91195241829786525372652880160025000755745626483687427357297936629043885332294

  • 2021-07-23 21:40:59 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_jcqUc uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93143484466022517118886778375301788617365803680617270420747433580880492830121
    A = 82647918394873057846662576850820548454170602678507041257250169292006834639057
    B = 90150643319139503955243462246745967899549854599347080538542377420317274441669
    n = 93143484466022517118886778375301788617015117139739210928163339297228052459757
    x = 7382693185753208955276566546791532610373276141004910744708269356762481335875
    y = 11446666604909144596698566074803610683083821343347840950417004853043034113018

  • 2021-07-23 15:40:09 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_j8lKg uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 9670184974102212648543671048737340592165346159441957839344480817381978482954
    B = 40068571563671381697334515893210631629121247464005731193912211657877888548224
    n = 115792089210356248762697446949407573530180817773228276376115078134476232364588
    x = 59466448248769832134616362252497944227564143873409442165199943218107774962260
    y = 26661371319981569542195375313141134644727238446456430207029234341568364585432

  • 2021-07-23 09:43:38 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_lzkGd uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103227238874071316983484203473197067278726076159160539311472262366068553314667
    A = 375971337586653544386383386706619425226699003906361236739751631314294204939
    B = 73179050472888710251244103089289834433781897837013228853852054704913454550664
    n = 103227238874071316983484203473197067278287941999198257027550240984218182604012
    x = 10034894708928915307583777052806232031549618264043318471220961690821460445673
    y = 18371417134774232926296690766465534010522099715903897628756004200559841015860

  • 2021-07-23 03:44:48 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_xQSOq uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 12460113495222185481477398558447304954219543395483117420363253821400311941645
    B = 71797549810569595034143813289280002080824654844333953437198490776123722674332
    n = 115792089210356248762697446949407573529633575889726443907298201777457391629121
    x = 54417904067327331448159878329987100813915076669020850364092076295793509472939
    y = 37474395551538776416230042392832083139095259363685117640585745973605803648314

  • 2021-07-22 21:40:33 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dVRNn uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 108164346990006462453098305975874031658877576573719068300332503741202127757247
    A = 54063771172314045964833329952583892401139149752351205159697497995410917477363
    B = 48747376047350064242410925462989064849545519019849072225309378565456818334490
    n = 108164346990006462453098305975874031658710438850710947871896158832096947859413
    x = 25238349879497368664827340950213832889677245654962743112207645038902737562997
    y = 46961592503513640141839844457471379760562561464748317602607654268390577831892

  • 2021-07-22 15:43:45 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UDDR4 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 111238626568929242218523387433939346031006853733114810180323032667854482078385
    B = 100133649672887999767362178434007649353001766980285568313022618018540757663613
    n = 115792089210356248762697446949407573530491838541135706055390553446076667814452
    x = 26995274388855259401988115753069410082421751746331634495499183006373421187136
    y = 107417572804020559282048234020738769975093684550920421571143364225360310239384

  • 2021-07-22 09:39:51 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wMtds uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86094152261359022588449972535347597222448355878640635531035740753675236283007
    A = 48022556471240389179772135264221094036645220397548696712666383446702624789805
    B = 29251963788794904264971810696953345309296932417595926892975366025540626668850
    n = 86094152261359022588449972535347597222384962528238974740491113954171224995988
    x = 22753927815122327245112188482263917296295349265898673327333736636830025646626
    y = 81064870592360690292933421061167358251814619839111149557621379979437675616858

  • 2021-07-22 03:40:02 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ch4I9 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14492921610259088420419578391876763587568464808840423207293333439483847203427
    B = 114392241629949786549262142505364601129555735183648171166279920988541719621458
    n = 115792089210356248762697446949407573529406993162150711273010027402005382065077
    x = 14462763442278388806054721252483706263100017601516171569998303716050840855034
    y = 81836656824075065607715435712944579552183346608985525294577236981851486646712

  • 2021-07-21 21:42:35 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_NFbht uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102765075305273809788849420877352824220531724598151014397196043352154182247319
    A = 97832681758940778777894863246738405236941104860821463739625394415609807561663
    B = 34628685626046168184594615193207810879690782830581117178974131490170223095447
    n = 102765075305273809788849420877352824220192027320146436894353502631589210204977
    x = 21829496225865809531040205250913638452745777183664528371272069991179992820679
    y = 65359071760628315204856741186083961069178147929680134162206109200760648550056

  • 2021-07-21 15:46:30 CEST nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Np3uh uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 25184281544549037377550571534296717961439434400375534074181122999429841462162
    B = 45686429185169655452055611950470000040379894317912018641707948610830381665004
    n = 115792089210356248762697446949407573529990734918657047688207458593125628034812
    x = 10712120556887737024910200872587356309121078325443844134170641612950386179075
    y = 112038830590731858455089452346512095031730563719202424579828668492260334653772

  • 2021-07-21 09:43:29 CEST random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xgnse uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104370589974448169750756581793127356598630177264667395026282623673807202058607
    A = 10321848380723742350558912519048986274195542674443993136668811491899767967469
    B = 65514868790401124686968909625542809929883156279915871144795383623888636642080
    n = 104370589974448169750756581793127356598255763996791914677150822561768811841148
    x = 33428761285658593651639655452901316645503493018868322149734041415253388081443
    y = 29568607469953874108111164491511125709770425145000815385663740896339858806006

  • 2021-07-21 03:44:32 CEST nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Ig32a uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52050149793519341490385609539639319956550036587710106901585560195900796939983
    B = 45880495108627328221359486673459975703105052220221013568223372099901058839954
    n = 115792089210356248762697446949407573530518040862697780484341977924507732882373
    x = 93071490158148249967967521109864953986154546064370122684076112320100915051844
    y = 45183449957101978201886478745477148212586015693763997848558495914415377655386

  • 2021-07-20 21:48:39 CEST random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_cnZLB uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 39035134803416715861713736850709612360302628298586900789103159852524748031589
    A = 28556787363661712962623356789984148568452950903013346706741029416331908701580
    B = 29047387744427506868395915222022008656318081252714349797019085677348600254782
    n = 39035134803416715861713736850709612360226262998386359888117679770134764879471
    x = 35149602073391877507839948488254072598388764434913380669453073565645676809900
    y = 2854274766028999949360234448255895474230023609260347027082658674847615276274

  • 2021-07-20 15:40:21 CEST nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_jJOg4 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30350216775273960119829866432883610207548026345719609004541369647256030262803
    B = 92569769478213181104225845213507516575002649142602555304564375287804476362625
    n = 115792089210356248762697446949407573530485962952936873704511100666521625917108
    x = 93659515212489961608661762797219618127882449522837420137881032451986501306413
    y = 94054095163829949576763443641179930229371955851713024454827394671919319519342

  • 2021-07-20 09:40:32 CEST random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_S5vWc uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54358150269881587608257547655709999959611046745517277502410536455473449046111
    A = 41701439699044711824424663165049112620345650557641081148252455670750715979900
    B = 24182197341763886540282369184922420503885294292497257372091849150058417803618
    n = 54358150269881587608257547655709999959563117397960578186692971702794049365812
    x = 2896326963489204287876536851376956482877490452788048347252007430305097006642
    y = 7755960218976860273815531585423950710121626419416524691780461751991042395682

  • 2021-07-20 03:42:18 CEST nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_P0lXX uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61812897950553005264691492132549926728089212905946880826394874257715962965840
    B = 34899450842097772055943425115659785530501653082446428628426369719988095825727
    n = 115792089210356248762697446949407573530572085274207997283476486697544892095607
    x = 87305658342220877068616324880458746163506779045852264790076462328856486803720
    y = 110114949235063081613409196449375699731748522115327830180684677201877800184214

  • 2021-07-19 21:45:09 CEST random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_3FtZd uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 62094306993447239454813230788338465680814193568476975980298696643984167326203
    A = 24017977289161752268895637369071477590590232144199614127145247375615969785512
    B = 30789238860277845069546355698707280274760204080796437181437416695623442705958
    n = 62094306993447239454813230788338465681009168171378575983297091134739850972661
    x = 19726752657693008503753392630306205450232799319100767976062104299348148659144
    y = 28977107922683138461653757749363526827311549702758407950615247742605494892426

  • 2021-01-27 08:43:22 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9S3J0 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104275172688951844533502487256546363124848857634985133844840564897177444608339
    A = 2791706473882585790709838911103898056295012195574121902876802892814206891672
    B = 24578656656289036195375802090108484486968462958446445892072733550570119802191
    n = 104275172688951844533502487256546363124946095822366714774246098123204080772268
    x = 50046039233796872723157016639139653017553533589357785756020380181082258143186
    y = 100536628662325363763859223126786689043256981586133003090032068310260349788010

  • 2021-01-27 02:46:39 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ceaTg uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105188048561561277194173673666900112258082417139986544912809138606352388695131
    B = 12854565762927111797235891553733711277975368807176204005723370928171113704741
    n = 115792089210356248762697446949407573530693082403352763140389085992630150742263
    x = 92682099088144185173200538359173012534043725300447057945785028402547015069906
    y = 50437920380679073803213494626986686096221147588243308001169753300420146571538

  • 2021-01-26 20:45:08 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_EQTZu uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 92371860544804220049852259866895845480831810904604221880626126550947595110669
    A = 37592847410971068745215125178440418684382834914052229534626436695585959358990
    B = 47337717620134304288281037755153461413263954306223052911455415715763108777179
    n = 92371860544804220049852259866895845480736993295003504665628549419309582825289
    x = 64098991675116071310117096614736244369204528835890331574512373275272814784962
    y = 33045065168849069895524907674235293685860791629671176595577852260341850626970

  • 2021-01-26 14:41:05 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xO0Qk uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 105277556449236697309778334603677946898190761212596885555121824111540615657126
    B = 91758877217698874958212068884302770726347724831142439443504741173962527031775
    n = 115792089210356248762697446949407573530274888609176523056002351337371190300572
    x = 1683481795916093155414643217617428176371889108398851719647514621138486073790
    y = 81166508332697191816690396189316357128761237344878835264344076359917272919320

  • 2021-01-26 08:42:19 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YopY1 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 15687632157369989401746551471535926842284428094241811601272138339104339198847
    A = 15160430277035777358420210288560445655068532864481848831372684420674819808957
    B = 2506777734778389718332649250217537785695636136402872555771852099856375517742
    n = 15687632157369989401746551471535926842093316542551792130105469309383142558044
    x = 5543454116320093194813889377236876910443358980380023172616049296520751998561
    y = 10263386645568374423174413068049451513745884956706595392009112906014845681096

  • 2021-01-26 02:52:14 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_odFQD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 33672696864851780399967096991458182624593133318603629154418123177045779920014
    B = 102842861792380029537784406935664557083687491122843637488259007719448595729388
    n = 115792089210356248762697446949407573530023076030134252765473745530687325298731
    x = 109961118614261068612958745705842478654114282976108716978541424969774761602579
    y = 11245127809120135228783696540662583312124974479365200400257038021968151836210

  • 2021-01-25 20:41:58 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_cXPMN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 104388129183122504069965054041864359883168428818949570234464098856071059480593
    A = 79794699553246629027946484087401615357630055248850179984145208492661737576991
    B = 78423176476114023927741499070373654665389850294548860389088205969647072040842
    n = 104388129183122504069965054041864359882790645778684132129058519687745219493019
    x = 74500631133966700849619120046573172185251242983420818776179583836041292598413
    y = 71126872656822139483466715621401547728468809406592767737273580729125953200624

  • 2021-01-25 14:44:03 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_JKAiJ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 7686388322067708650226063330594047270348982838483740381575906313128211483010
    B = 88582112325956795828606900287865182730348059872330726743809423487166710446513
    n = 115792089210356248762697446949407573530569632138834848844768182223631530032236
    x = 109772647806305260459936362308801941039617018976547999949456101889283618278988
    y = 71129590168568381703488991069603217639126760606606811754008704717117232209294

  • 2021-01-25 08:47:05 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_p0NGj uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106080751669819442859957947160075334825867872050033756169757760697837794505563
    A = 27358189238702919655846494983790646765402996773703083956487918940948451129809
    B = 6743510328765312822491529256079424238900160490753499751628315919261675640670
    n = 106080751669819442859957947160075334825975908705477823147481823400730748687332
    x = 5510594944862147967091520897627090481043051572769846622959308402044157992984
    y = 105604624669680832371900711663114936680978155533504574231947282851165433819552

  • 2021-01-25 02:41:17 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_NWb46 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58898123305632325351172234843348200241808437591285267984578199424051846935883
    B = 80797964260128095298531018752029904076907032646915097906052670635517869733759
    n = 115792089210356248762697446949407573530026368846199248562220037034958704193701
    x = 5209811398231111129768104633954525336926873815204337438662704973284906706789
    y = 26846095856805935644615544836704129922466363585633739261447321799794030131858

  • 2021-01-24 20:40:17 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_TQPxS uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 45778753204219964386920239322546739467987144346528095485375757833239140979133
    A = 6017863953911490248971384381590954548989256869483006280360004763849505715351
    B = 28762153361441575218158636133324217926671699128860317788850627126072769525109
    n = 45778753204219964386920239322546739467694771803051424830039316907388505465507
    x = 31118480651280774550721188614657353494190836163039717176983289864717028851562
    y = 4237469592066434889593617038134435127650338178429189351076553217166594579716

  • 2021-01-24 14:45:48 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9nMtk uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 26465054520765240642544951729408890528930692731728696726052692623459403190021
    B = 51735998400270938327083181039138139437554655374677747234799944776285761645211
    n = 115792089210356248762697446949407573530142456420437166344860598061750595182556
    x = 43695229012009056402786966812857971549408096709401809401599064300633281975574
    y = 85538283358524337684446345031821170627417170579744517973309470542714807832594

  • 2021-01-24 08:42:24 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_eH1vj uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 25241341138187852957278755768237131219964308415774506126515222124285883078839
    A = 17144180953132571787756916626169287225019862500529263946925297583657578988662
    B = 4040760280518112872410231057092287603387207596853612541273422578502855427078
    n = 25241341138187852957278755768237131219914779334411956300201828461234917189292
    x = 4532426535537256063829424154257007679492146953641706563457732493381532436444
    y = 237536965936864389581020639743952239315718866134565517971649867490347815664

  • 2021-01-24 02:43:18 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_L3GYV uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88930526528687773955195890904114507071326720163292409240110752495105647316317
    B = 14543726918852717963534313016109256031166412085434459621083057951277897070836
    n = 115792089210356248762697446949407573529700878532948010806090166595658093984767
    x = 29222525018933557571234545511809710118840689529712317625980174562644111679945
    y = 45224325532063070286084150316700722143227702059731371834121105577384554190338

  • 2021-01-23 20:41:36 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_ZXhcd uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 106239305625959068388437349010277040088657238583852990528685912594100505561033
    A = 98112065087826010113388999504925496732028177078973772947303915217580381145208
    B = 21522144897261157347099927581579691233944155729527516360579949009369721342966
    n = 106239305625959068388437349010277040088603523635160008790752752199095053926451
    x = 81542234349241324338622899592870738492447722434589450182799726360822997520981
    y = 86892062114656752011503545225178751943429624509051107100001281160895528510

  • 2021-01-23 14:45:26 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qCecI uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29410426992136139737341574731419780095261351729691156452934429318079406577020
    B = 31856701599815454497244154948042567806135800014697652300716864915319310917435
    n = 115792089210356248762697446949407573529620452445869893723412542362203548655212
    x = 53195235754466729458353671955903351036643343677954167205296675746689018595109
    y = 56717126585347273876157125511015742283353755610164512679446024869437921582042

  • 2021-01-23 08:40:30 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XiGzP uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 59505263630231012699778634484528127861663603572106124511513912282263695311243
    A = 48634552845449752886303344219489421843136801549755829288326649215032617217249
    B = 4635999170824977558070647632773812472585705927954327085629846073315037484193
    n = 59505263630231012699778634484528127861773125415722210342334520895832686967572
    x = 17282806580544380788272518624243011681666402553518917111700365887961011473751
    y = 27703828812951020739653785224645383115460796894575951694775391772533405840858

  • 2021-01-23 02:45:13 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_nFXLT uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 107785364282028008663534683167742977679847680280152606080896586005427273938214
    B = 90043189123181443132817272203879313375016199865582541095047600733467491750381
    n = 115792089210356248762697446949407573529533063077785040411523668860141959505453
    x = 19303912693397852331514260333188572531434926988599478773342219263379769713308
    y = 103747673839840464146161221969103569351065083779570072998379758538554754999852

  • 2021-01-22 20:40:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_00Mj9 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51981722592019600223511126397603478435206827169931968280322950578187463350857
    A = 38917974188658366047596263403491811372241084374791872337410583614338627726607
    B = 14450369763678510285054700964047674063427847446959008956739323530435624715122
    n = 51981722592019600223511126397603478434997926280970925040102275697603838567833
    x = 9394356696811503992336464296523358280487454210583317969621676443569584995391
    y = 41762420732676090720839188773175687283827692049600631928921188675065171287412

  • 2021-01-22 14:46:04 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_E0y9z uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30370448961906667805974854062818610250776961559581521325044696324863238066960
    B = 47016028689975748781592722245139831392903027223975058694769809021353726515054
    n = 115792089210356248762697446949407573530028035918316703627892734116635713756492
    x = 11766606059183912947335899999802050105119569245500189546197701636602179002605
    y = 91967302123502647521648417904015494830669737364584410319589658026477659039778

  • 2021-01-22 08:41:40 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TUd44 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 11266008193459644249412859010368285085931901679508910137690191359169433945711
    A = 7455679810516436947308334777609539995075877472939534113724422825469828990139
    B = 4185124770104747608338493034769779041899454942921847061355886102945463326791
    n = 11266008193459644249412859010368285085833332908486178845000571248901590268988
    x = 10662339614723395538411417761263653285731820564686215228575376800153633232089
    y = 1856684204607716290590939731767016965490343935055483463355650529957555145172

  • 2021-01-22 02:49:13 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_82uKV uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47909372902467069735333788622642973890502999235799247585745605453412647522888
    B = 114781359306307217079617019212641089406887547758629419230043820520220088325055
    n = 115792089210356248762697446949407573530554648418233371745123617426673689922081
    x = 111828566103708748888033703435239456929861564875121837694873438571733572642344
    y = 12118936324725801539538787881918553666600783992789849276053445032261363312126

  • 2021-01-21 20:42:16 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_O213w uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8148491887714386634602330994877593753974978636215838990810885115015384371383
    A = 4841016417851793273961355430044695817987019733793540607368600051783248165268
    B = 5463818570419357893224405249603432084517268472790411637271027244104477265904
    n = 8148491887714386634602330994877593754022785735444192850745352174259134311561
    x = 6794627825919986953101906805847495433714358411573813279583572070132028966072
    y = 104564242651364962059172652961442088710033486047265126041983090219923327022

  • 2021-01-21 14:40:55 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_9XPlr uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 78467854957130134594591567030399557118672416150478716443968761445077314267838
    B = 93181329986158566044841346695868617093490909842133489052714911437456790337442
    n = 115792089210356248762697446949407573530066509877162927998048934492070394152892
    x = 86311857105617778543767042356099653728202117439609240907035273671857106289238
    y = 39084756030171973083747878883026352577771821815506098911305947666579237620536

  • 2021-01-21 08:41:26 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XRnUK uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 51459994283572971837271043842543727216434171114851897098425013708400337423643
    A = 22396772693281791263588289047048978448170655603443011146329257976768769690527
    B = 37088953220406122085858260694651605598108855796525362397621882121714249690875
    n = 51459994283572971837271043842543727216710359564745686902738525162364636980036
    x = 44978216122750125452481570095996216691209679283222766916670709885109540850135
    y = 21385360090976883998819898295319358948784333554053260394491218005764553657430

  • 2021-01-21 02:41:21 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_neDBd uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 68958816811065912027181533585936989017628526919590329545357550856659041268053
    B = 12519003538153881411211975294508234704146094956036266747482816423823995907750
    n = 115792089210356248762697446949407573530075697704196667220759211738847961152237
    x = 89073379357744254930403909750817136491405585669022930886800067817686300059505
    y = 20398844891810271014469563963851007568818014159008784948318832857451569567436

  • 2021-01-20 20:40:51 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Dyf78 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 66224379949055518610398766926310238587271306790368077413991188347656907073907
    A = 30637233273009846548187338400029570261173236069210880713908022826378494223066
    B = 43232941056430672721485622473193273663698685716538725661075657660253789922975
    n = 66224379949055518610398766926310238586908743794530777416655781853890046354099
    x = 33402483427506463039588458354456845854524887306010015371034000543047620843957
    y = 50288829793298327924778898814629807829871765764951343102963985673794194971114

  • 2021-01-20 14:41:44 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cgOGz uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 88473385078185066927427659993643147777119680153708547519143800669658895439871
    B = 104111480267593137336923543132003533277165967606040119288586387659380481381616
    n = 115792089210356248762697446949407573529871096475071935256818338582423126606532
    x = 35516371441068710927478287595658626505895158632773505055136251936060167793977
    y = 65726008643313962966338200387617151625644268106518767279426032323503147969628

  • 2021-01-20 08:48:39 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_8cuSr uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93562486213163315197752490347147494802059006512585292913019577847702720363911
    A = 23331926677029797881228729883296483520108566807156874619731507613211467943444
    B = 62202023773831774243171536802067458421137558008330124924942221863235306761921
    n = 93562486213163315197752490347147494801576117128727102302561382039587260206348
    x = 3190344235597132887091932674343198691546483016686785503734460374341293672155
    y = 51622732842173726475590376298205830465618073075088807633525121601317472519326

  • 2021-01-20 02:40:05 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_sz7ZG uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18000447199312826081732802932598778897100711490004608264308607405081884505592
    B = 76901620192741404827149606053105131750153207885887853761194481966305493148400
    n = 115792089210356248762697446949407573529929649208311247159122872403298454893017
    x = 91324859427994977161306538221622625433654853119997925940771017396044281023386
    y = 98450924633012788338356170701747279064945547780373249020517108416191064995244

  • 2021-01-19 20:48:58 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_nYmM8 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 42424595206231112818747702722596572349205797760689429062291177345719906869203
    A = 30105263093746773883594686854820200335934791533981731646907475476794159198950
    B = 37108570465176753750079166701021042102407940945518180821063342217276220668174
    n = 42424595206231112818747702722596572349586275194547824109728943599163405281661
    x = 37883180348394027017006534603290702199800188623265133690495769688680975812623
    y = 35587524342088500496875759889099421976162188683779764996660254415931877074936

  • 2021-01-19 14:41:43 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_DD91w uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 16077645578627943299874460339463819431219726801811041159250897475259194644403
    B = 87269114971848919691760002078582637882122897230586112006180748490081277828776
    n = 115792089210356248762697446949407573529845002165407345705380979362810432344476
    x = 50333416708514363361484746307000571880317943133035516110001776938619495238866
    y = 45978199093415142275437057177393345285885835186304804740689068700488843118534

  • 2021-01-19 08:45:08 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XyBYk uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 24553928585653734626532705713487809405091860110681080503716655684149741095779
    A = 2161520675273656590288716544653728452320993256549854087284042843734189551969
    B = 19153328534821647354077285496685663323150894258162924304407843685083019625924
    n = 24553928585653734626532705713487809405096494508259747633134405156156717169532
    x = 827913224577866360941636895786864584152953834947532860414238549084680029630
    y = 6464810821061965213212573486142906117537586086055378417850784906666990855526

  • 2021-01-19 02:50:35 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_LoZ7k uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 58627259192272475748135513670416594080450067979619492623293467057109040459327
    B = 50989360584254401268593311556040477855767025182633564024432404218101344806215
    n = 115792089210356248762697446949407573529532774771559040436196615399713740319167
    x = 86986978935963364641292466457982277929391880760557606634077587421128824913153
    y = 73707906878285833594206808600665017774864187315797284855594480651861490265966

  • 2021-01-18 20:41:53 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tjuti uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8672577511544142459955253024751638394805175676350848330013384805087356789153
    A = 1341082657055259400208379861624226326557528403590306265171523176277352023393
    B = 5617398428064353284209662242479804577979153478573609058396845068218672635443
    n = 8672577511544142459955253024751638394907662047690991002784233668008106567561
    x = 2056045756489392858287379815203749037047568010262751409869855282243417343069
    y = 8177375669033638680353195699980007511616633060931066517934105224133764758202

  • 2021-01-18 14:44:09 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_C7MoT uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5644322340591355059753384875305285828367006740673428495756748473825806456996
    B = 51968385949122179099712494691070932852295174637832671451079627305256027603129
    n = 115792089210356248762697446949407573530273606051195636607966044037650897637148
    x = 91254630011624062297805564238454108796362691180212914073537302544196841060420
    y = 89575042379757809049710872866451777666527281124729573389057621131337172640252

  • 2021-01-18 08:41:45 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_UUZ3J uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30836161887035371733254236023194415582600079281899379959208713096528578407119
    A = 19705730358372080187417440676509246398795913154834141172753204148151006197679
    B = 27414474644630853027032241442852097615746525858032702440340175806884842249322
    n = 30836161887035371733254236023194415582777085764327094708883388257835957120564
    x = 26224197246263078142403981200961213254847434035630295226194032338907758901467
    y = 12839047847117341195399112959966990917264462285839799602276493756823009075562

  • 2021-01-18 02:42:24 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dAQDH uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 62987903622384141113179117407653396248344819702947014655740769821036539836090
    B = 96118905211947657339092241497585729277616589032468513191830392250420258124922
    n = 115792089210356248762697446949407573530495913204096198291566971293539385910093
    x = 11760806806175869627348929972483102521461973460196390386365057566733881257288
    y = 112956962545781813973265149106414704553944494732200282143152603270914189570740

  • 2021-01-17 20:42:35 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_SuSLu uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40230529558587815157065762198891476152618092962366251052053026361780606140429
    A = 35007994594648918299588725807964156094079628277642444079881827324122563863901
    B = 37370522232411431175698727690480650788320050366902871309843271579343674156104
    n = 40230529558587815157065762198891476152293905587433661321390610258945853029089
    x = 28405907144903295676462658519347335496404810464717576661398221714245490108989
    y = 917403904094769308137825298311389349989740428773280377725241868720880625142

  • 2021-01-17 14:46:38 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xvIgR uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 61151019242775527553556225447830404081226411013701808725098449128045107964700
    B = 45784753173475575963733041229901340727585163943487691861345115002506063517320
    n = 115792089210356248762697446949407573529720986358261240467154721673112359719572
    x = 69959910462677107790908232416952868640705678276693003065578520945753710549344
    y = 48992967219292726775213731312777097590589224445893506815783029302195419423416

  • 2021-01-17 08:44:25 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nExS7 uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67276583491738967557838352532111327933487002281033480206224122456889893886687
    A = 44188978225948838825152570403965365007710283373055874777310023287138893642887
    B = 20499496677253746883588712798388217523283621739642080589093910149196545976724
    n = 67276583491738967557838352532111327933665638993935257983126096263434496601348
    x = 61303753745855172892774819356814291859982377839641774350484894604978963852805
    y = 49665028243862727323012181827905450392265704594141224773094553124179066671246

  • 2021-01-17 02:44:22 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_eV4ZO uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80632876976542389892272805595020554867263793391121815538235972351982574327675
    B = 90692869115944551130133805091955056672324006726845513638186566589463999930911
    n = 115792089210356248762697446949407573530469440253763948446427638715634118363901
    x = 40862970282306692810143003398149292128332780874685611063735678751153475876893
    y = 71136754068638501960789244715078124718612791008772770251738213972174262194908

  • 2021-01-16 20:42:24 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HN2Fs uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34269439100631340455969428593571540457861102278344281915538934252581567778851
    A = 21403772737486923744894742509902157847002277913279308882233149537918562165721
    B = 16895570507707076730243253405471963464963108795263554049261919988768500204410
    n = 34269439100631340455969428593571540457809631427411940399989254764510298857813
    x = 19666963568624295031975021852702337350054345170973855379763073848679602684240
    y = 21355450894144760519447478851719482746374823094674481744301180729737124246032

  • 2021-01-16 14:49:25 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_n3Snt uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 96889697886214090008030401929254541449327834944503685836516921094531784433114
    B = 109079818317351146897540442555540787199421768394592139337853134884867926549310
    n = 115792089210356248762697446949407573529968370424679447301048071947921181901132
    x = 78621539476754922297527479998126074097143211960260015978983827341287022837493
    y = 108284467728169841778265303983144040116016806545941993204096884691638395077454

  • 2021-01-16 08:47:23 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xa0zw uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 48212640986787249448322497211237621965636708301195430530203859791866352171891
    A = 1507752431549111177268567688839233409107341751153801110907418496100526107684
    B = 25281686139389998446419851544117017739565598677731818438388444595826657083463
    n = 48212640986787249448322497211237621965615850301298252070921626238952242280068
    x = 630226518081177253549197519261973578156978501036671620143700887432402350824
    y = 11890396876454515275452088531099532905669844203050022856825730203244480764314

  • 2021-01-16 02:44:08 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_71eCm uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55105182356558729837143149350272319628894427205308994962654130106422713939929
    B = 29301835358192637864088482091150359566369042018206685752395623008834042705810
    n = 115792089210356248762697446949407573529741185486875136351927812317987551408613
    x = 35981871804052026246942127229576497064003989691780486568420732399042862035306
    y = 75802202657292994434921099340580599908003626349624632002916046109789959698684

  • 2021-01-15 20:40:56 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_P9v64 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 4275113597638499967896589488616381921441240915970901732553143842725644886631
    A = 1595225318828091056295403772544975018021702304144388165414893680188290338826
    B = 2569226386965127638386139967877125225899620110938475161313328437331513377599
    n = 4275113597638499967896589488616381921401258741657789230692008503742520844301
    x = 3086811726948307913349114682268815225210332162052871192369968014652682522071
    y = 1516496252261126747096882688190194523207760069886305397491949255128184091814

  • 2021-01-15 14:42:24 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_qZSD9 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46144931086761785671913585427251630179433643261316865598431911869181303225252
    B = 62496239512638240440501949792605593034556347115535433971518842540040500425721
    n = 115792089210356248762697446949407573530023977341199403305041644750635787775428
    x = 62582293479701990512998784717582599120623464714206186854481615199294672067736
    y = 93505501083325622188544689434241362998521461078383524097660858027404834008076

  • 2021-01-15 08:40:57 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_4P28v uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88230617656700814401722592764986178267642371271604675110756845015855902497079
    A = 26592391101547010962843020887078183265289334417390883070057637979637541373293
    B = 74494758849103115377837517128168817523293154783779576058291417342083045950860
    n = 88230617656700814401722592764986178267590607811222018023264140621432276740524
    x = 86235463458441693681818861146333916687141792785153402431537768483820063510712
    y = 8248944911194114346553125107249543335045986303002549536261930010375330370572

  • 2021-01-15 02:45:29 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_I2eEt uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109241612660336271603215417115810283656962485232478992722328942363044668703034
    B = 7300981076648993860726419026311532090029411386228430954740498932865577978821
    n = 115792089210356248762697446949407573529950236172506550970695673841986037648467
    x = 99482322239034113899682319371106661916590681977473702365759394050566041476433
    y = 99700714711360773720081571764628439025356215014668888431694507542904692613894

  • 2021-01-14 20:40:55 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_ZqA7S uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 56300925602924830177332425914048357669396698776320032443809438203601115971199
    A = 9333135060375863186966480953501056865915901634635591242281431661482928814757
    B = 21555230620624261214492738699262092000795446571832155071714579183673635619349
    n = 56300925602924830177332425914048357669684167159282041447273754220108544147801
    x = 44000555746678737826498278241755021374856541950089621438820756865508986200133
    y = 13576232146655661465485274067587599665031281555857399282711373215249845521218

  • 2021-01-14 14:40:33 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_uDENl uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 53285829375322732618707241996499586027994702141101039681693087596919583137507
    B = 28231713790099019207277867129057913849043571852343586869277699993797791470689
    n = 115792089210356248762697446949407573529778272209963591981467998228904024923948
    x = 78481560402414809567696306855503869933199982819358582717078371941223703025785
    y = 106906627721802676878542208721418094899030708136940616498657302389150981968792

  • 2021-01-14 08:49:18 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ENzcX uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 10834263333026202686981006272001468830511342277950958982853484540465664371803
    A = 1989603979280774886056263464179317973044083582291350569149547791306416560269
    B = 558095429608410323635943716631105344187552350143602554082005374085358589826
    n = 10834263333026202686981006272001468830490240987201166558756322694477613763244
    x = 6572478424919717067917315151524091565289297856660092460328152954804730788727
    y = 7508870558921908335354053162125133085539841068726453819038521678333013497006

  • 2021-01-14 02:53:29 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_242Au uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 231802924481694267643260947396433848679436248568256506518658786433847935076
    B = 62589706448852996081366416138055314239255966253407034082090925569859348990133
    n = 115792089210356248762697446949407573530484242287853762180091499520977250111377
    x = 18227559443041720294607352309376527250829324241172032409985033748428980177983
    y = 14575343965139491831235173147216485870672354139476609523049554555856281906586

  • 2021-01-13 20:47:26 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_7BLjm uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 40755905254293365986871656026449158034030010250993503559324170858496241725117
    A = 38890976931086328683255735476909274233944554240279898732242901816951165394775
    B = 10444238266862776367001257458471487311946206557136942860174325229668309094145
    n = 40755905254293365986871656026449158034248431895415705789446865935163934792143
    x = 26993234354105857763432727550703152737679606814441753174559868858604083863687
    y = 37978535477260950941281034957886491410134510438354488736957379664109601710806

  • 2021-01-13 14:42:11 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KL2c0 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 64781505665078990420119901509236558040304416335668491005426990800020718732701
    B = 63184133658029763338880682478842014497656920174712275972264903903759293654421
    n = 115792089210356248762697446949407573530620560463041487676326561427953551999916
    x = 109029745740136651122721917059089133802844024334053693050426065313315415805503
    y = 62174030331468598208219910738170767233880070434366639917807929298215664716202

  • 2021-01-13 08:41:32 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_KdS7u uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 29711902944671357248317948018035368657920428453043831709798980835687877316383
    A = 29390079106712234020000818487046667117553509905238623548312958813684873051138
    B = 5571090119027892889510574690002702210974926190116780260204649812938344885996
    n = 29711902944671357248317948018035368657788746050097829071780427269230703128604
    x = 4948416150818498832171124705640262253869433790328917439454666444670095403570
    y = 11035726272175172743366639621729906176442137200405096263227089434985201322176

  • 2021-01-13 02:58:06 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_xbjFU uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 77487177230328525778606110766223853037067622475320958211432030004191544550679
    B = 38684862716720478186130429639250511638026266239938311936020412450765249730756
    n = 115792089210356248762697446949407573529692654942762552730125960985805807637073
    x = 86167548817461302728246171285169588929242654584340420272852231749761423335300
    y = 20867562010744225062439822091761745751057393639412704754328833066403215736296

  • 2021-01-12 20:40:50 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oaK0y uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102727593017764507448879412797244499365266502280746740107045711232336243351063
    A = 11508920003906513241188881409693933652214630445851286257784586634737254182515
    B = 33159982563882889696189685372373430557656140950306055556558217895807974530557
    n = 102727593017764507448879412797244499365146605980903673215436633966998190367387
    x = 70753300259205528048342650951317040843762802303455737178699518557807181320917
    y = 76375902257342460136718973948087932751013458975620413709972573483258128258904

  • 2021-01-12 14:41:35 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_beyGF uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31320647731104564662428888098853845061503843116631577600036087615909754343230
    B = 61213106428519176837169934455218493338687082095077910884623599175692642398418
    n = 115792089210356248762697446949407573530497806476036247330670106426098515065452
    x = 7563818572486560305274537737584495351424328119622328075298212558060418453717
    y = 42772726504907770482327954987373177010963004938115632568540444308876711887030

  • 2021-01-12 08:45:04 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mhlc4 uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 36625309510316397291407664976475902531509697929579234847994081361170684552471
    A = 7362175753846327394479960589835611886501479765607086269301941490871529375688
    B = 33260817883420338917467352826055455020232368901290666906440621662721498515453
    n = 36625309510316397291407664976475902531683802350532325967276307438559093001412
    x = 30053225061292161577284256786178874903697065235185035902832277343936587072914
    y = 12916287279603413149855747296655438368750368637302527632679462386300428824966

  • 2021-01-12 02:42:55 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_2AEKG uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 113826539297665788793136361471381299279868313063734606719666484554757121407467
    B = 13541493611904125849683677741711571608175949065029911860820296393582260206813
    n = 115792089210356248762697446949407573530726268318352275029224602692630745595333
    x = 32018280426823411209053263886724864732913607690322088542110743503737225503304
    y = 2804304628420147115846278886441162386938070951031689879421457117538618639388

  • 2021-01-11 20:43:09 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NU908 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 99962980457915794823182462686652275668779702779749634573551960797523210233031
    A = 58758095864559785947998647376651406849073873134529847059392252773574027786911
    B = 42602176521814351120959694298377834120947267046696720583971883210877002185859
    n = 99962980457915794823182462686652275669171482178435676611545565903732471430247
    x = 54830636528231684184715718328711210703790046815168254396866194170775984102215
    y = 19132091696542723221516752932552772975539600552089749612379295665058908132032

  • 2021-01-11 14:47:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_wx905 uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 31580898522760362988555054863072018478289104875946448071332838141810028089726
    B = 81003961291731765985645529524657379446240033659767033615083529602611353600253
    n = 115792089210356248762697446949407573530664026705209982029101416059170340904452
    x = 57376576224389303690512879955049892920197129794000442176406750733457861553321
    y = 102445098415988186476451983480473382101965491496285633244841529939638551916232

  • 2021-01-11 08:45:38 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_IviLx uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 79131043595121680665674228211730319161475520525385320384096262749696544961503
    A = 45552665079998337598255776171556053541243591514906428109133772737041891285229
    B = 20766646965150881014702891976985206635388462954758232883970299791922134460111
    n = 79131043595121680665674228211730319161377594067716979755529244631325559798524
    x = 53267724973083883119527398294894886141081004418053797851062541979247894056185
    y = 38361777207781521946006212024883208258770342469052303808094226026950176824296

  • 2021-01-11 02:53:06 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_L3zEp uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14297469034154965200349419545952990644093287639900687504212318418541712742499
    B = 71612043249745335610267423991436054457206094795687649979927320766724136058629
    n = 115792089210356248762697446949407573529889391288863967149538784718650294141537
    x = 42536877006905381389295207995875609418665567934241957178195473703537696620
    y = 38374098497993848654629708053019938830714495597729293290276895663158700600858

  • 2021-01-10 20:44:48 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_jpu6d uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 105907316405923912356633813064146306049820663635595901295583262111834515987281
    A = 77578630572789017221747707726735422106674088901665630505218079023364432626198
    B = 6658142139791086208528619641843291902434709368897373942822688913165086033994
    n = 105907316405923912356633813064146306050091930100303279370759507084086769516561
    x = 49532503731792449546704167596381394144447391483937329440545146050597510445980
    y = 34906449271130534683857025848694751512508937316086414331595029469477981006686

  • 2021-01-10 14:46:53 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cmWT4 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 80363191107901860797275539228869396828038775715193885358968953298935493759834
    B = 44765292559103938794474376718050230126354642007220906203704047682895050375567
    n = 115792089210356248762697446949407573529563092336447423647949013584370658526332
    x = 59433314038949280626812962123766989636706504670654988641242599629535384486646
    y = 42805065878386066589368224064341355007672300413777967093523284938335965837546

  • 2021-01-10 08:41:59 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sJjou uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 44749317692636355094159684236649396162234256148981445659316304261744799423587
    A = 43775661388648431632927780771391704027183971245219936816983030178247959064581
    B = 7100512863060011429040223196130927905710298316896041496210200207402246526580
    n = 44749317692636355094159684236649396162090634633753953207683727726833416349724
    x = 29493631366381184874698180915834258207444730440794432167112492605783855974408
    y = 10591427476506403472733702039746979372017780735953591358247095225541174594270

  • 2021-01-10 02:41:22 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_FBFzD uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 85284452768640176253385949389183401571077137887456520100242309556755682460621
    B = 61284951967647290567892205409561968113316445828878020518862316931873294711126
    n = 115792089210356248762697446949407573529893757773477281104359001717480705657807
    x = 94159879571556883573003993984232662512121405489625604981371725256377806651131
    y = 1275638568179431251364578217562555651578192550125307735005868092301280780052

  • 2021-01-09 20:47:07 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_dBRK2 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 103907993831317594388506909899878608683994709852063009800677645626040593390617
    A = 80037852005194648276773816942107107049117801414639415550210777078743625555347
    B = 31997657392678663509070316806243025924777519042962042911767866628886758866305
    n = 103907993831317594388506909899878608684478626331932006201184510037917450867669
    x = 33448786826447278653188138390971543676062946277667026730870138308774717311891
    y = 88099449257913802430291627748387565279216660809053677087304291419356157668928

  • 2021-01-09 14:40:17 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_7WSJI uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 23906999064812114502052460717746361005335449227819398978706250032668260120624
    B = 11337084403029732894695673938530764719244119993698859707878980136114213885249
    n = 115792089210356248762697446949407573529478429416870279950355381021765036916452
    x = 72022935577530710780404963132406177560334009680963035275139380797825382635408
    y = 884154991393508222811128625643326539716474260617655095278933314908550593220

  • 2021-01-09 08:42:08 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Gul5o uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 15486581288530297289515087063887264693443462400458346464643462517019935952951
    A = 14402911708524233919890509126733604351574620710442538720846432205361036631800
    B = 9779733176187851550445141505287926483422964231412444522625756167398093759610
    n = 15486581288530297289515087063887264693363117019905728930242748468986707874852
    x = 11166134927374145315793754111160879074184276046371882018367896706295344780853
    y = 14573934427807263202250815051619483709335411783336718759065967846026609830972

  • 2021-01-09 02:44:42 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iDvHC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 55682859420065175530222471909225322617319255343899332507389364289956329761444
    B = 78717467402175264211088257049916873164571610224926016013303092863960107309734
    n = 115792089210356248762697446949407573530011560186903687035470778200353102364597
    x = 15220230410661103189263834264220962487507988150996999273653020893596380176474
    y = 44528716708023371041667196287106790882164056843838791077915853069045488536108

  • 2021-01-08 20:51:04 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_3uzE5 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 102099198371439888735014896276408030182034349785007319342124797298953894433909
    A = 38273518994895839222234843341489139930331153997551979860374782929054869272536
    B = 92177514994885933611776284278208814193790428116481663783051607891303150918788
    n = 102099198371439888735014896276408030181635672599296070432637157225199655056509
    x = 40457531847955602404298894811614531660883080468682857597598718277137615030747
    y = 100419188123496697780590499683009051361679016684689447149796742135863148751712

  • 2021-01-08 14:41:59 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mjVgA uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 40645695847652296639766885562974403476056244360475365803126816742291960005306
    B = 4707017775178311347247593929715959688617303818527115102575777082999730259761
    n = 115792089210356248762697446949407573530454266381381805668685053543553601058116
    x = 85105625074466704522732471835746127087525591787066227686604300699830250527364
    y = 36985948188780790377432425982065810765103298723105352351706083258435583606596

  • 2021-01-08 08:42:32 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_REyWn uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 88187702378962343658863656200826089148361762574553412119788816193748404805791
    A = 80908314206506317234013343710450970134531782667308651032661081703943370860873
    B = 15524813593167731132664480721346520229532906301213062536402797837796161463838
    n = 88187702378962343658863656200826089148120985489237626939256803996206635165108
    x = 55384164767707347769193250812415321134587654047662771007388052768348648314097
    y = 84956412829664776494146316028256405248546346339259783260652666893900590745538

  • 2021-01-08 02:42:36 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_BWsU7 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29856997604653170826135671340860173105340434497282377383794705061771416605311
    B = 78221294022321294378591933278828862409807455255233102815570345165754128343080
    n = 115792089210356248762697446949407573530219444672795192628201155952554892351643
    x = 64546394272645630883190192810752198827183335481487663245410009446196672333640
    y = 93064857338012799335559007707943249626136716116236224644028700138132967184998

  • 2021-01-07 20:43:12 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_cjXe1 uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 105593034580653700609724733413391856968944047894118868145710346922180803529153
    A = 9350390702709498998164120725653288667823228818523457289876350896821578190724
    B = 9393237889169028821535114637678058863086355288289438861682915755062751213168
    n = 105593034580653700609724733413391856969066199267359244295892432041504466690951
    x = 12337192134509221426408666855300407103554695347578078324713328849570165917547
    y = 23562855243036741971483019755920451178668156439033646756168421630885742869834

  • 2021-01-07 14:41:29 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RTzsQ uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 101595390742706910501652963737298212490234336720582810382130771130757021627467
    B = 83106194310302585694579675047257396991332464730650419709350822799864148964035
    n = 115792089210356248762697446949407573530469464177135905728914374213618808860828
    x = 54333527754956471260899430087422839897913581942154340139102084967311954805573
    y = 21609161586806204499804644434865671617939267598330888237450753449341987839638

  • 2021-01-07 08:43:53 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XTrCl uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 84466778453201442629195842378355904833937492451688753736970785740228246763247
    A = 76650745486505604754389175614657738739700088291774731439871199809832918746174
    B = 76772281479956778271589678375779186227216776961492253509617029129031551659080
    n = 84466778453201442629195842378355904834188281562182704361752071998446030148892
    x = 46238220557174684502843288702361654792586845825178625666458434046902576614641
    y = 63107985408545436702354957610057868778657517529066181624803753525695285730530

  • 2021-01-07 02:41:34 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_TLuE9 uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59403929127147059589746715020918471571079344440500896180862150911328795033383
    B = 11911995000227238458737669982523542284885653574632149321735652588971501618839
    n = 115792089210356248762697446949407573530182349057980225759071777689005398615457
    x = 11082770564162717154882526729321568617319853113703185785137117440861342317946
    y = 36970127497130318775353479801116293576029819505476460010992260875719684314602

  • 2021-01-06 20:44:12 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Wgm63 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 54292717452689088702900773836492351540496506191079413323549285492956020031699
    A = 41863725268539884916325609963143751160879862414874141218747464899838485459570
    B = 44085575081929261761070687364761688026818817835560508381487039610557917322885
    n = 54292717452689088702900773836492351540686805943902491001289459996623012137989
    x = 41261839214650441131273558059557080285024634129732726588397130031601246607431
    y = 48856095849932193178280071122033140977322119142668487971758097195387666653800

  • 2021-01-06 14:40:04 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_mCH9w uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8803110082727791486519175288665018023837403231659300605904719830506934663369
    B = 63379338381912127594733188760396148947042830538713432606087037764307138380842
    n = 115792089210356248762697446949407573530325654462856807472927486329833182160772
    x = 77444628788874574283203100892212832741544667122622684786878044650073761519373
    y = 56831807772390833523802330107423739983065616593976765930608943795331784020606

  • 2021-01-06 08:45:35 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_RFtYt uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 10435598055404907878337370457738747952419947604764896635592863070062984727919
    A = 5342246508175786733678005180047449427285771999885763049354703799873673468819
    B = 5603766736957630333755707640625756691708215188305771401803877803052239035135
    n = 10435598055404907878337370457738747952475090597500783153569111940240752048588
    x = 8249304083640930408386694117560731946571280749603700604668632165599620529284
    y = 5576163161529420635864026745570677053362724341629782778059162109345792693958

  • 2021-01-06 02:43:56 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3LSX2 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 37646152435273134885165371116880826356018938774286109214105061378242809088796
    B = 98816268601581202541697363051365340392844426513509823537684457841901420586967
    n = 115792089210356248762697446949407573530026475849644616724619476553274706345733
    x = 30329621343391147811458183195837513668897294243690451226978338237255528242149
    y = 13208873269397585888768281770007599381200944395578182570901388514291280255692

  • 2021-01-05 20:43:53 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_hbH4m uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 25553509809888663350660301457169405077982478995155467011502315126475873947247
    A = 19593448220402789220913331102574006508356212983420072725761168240187112312857
    B = 10676407840146400617900398628519383730179127376731368045206523294456959254096
    n = 25553509809888663350660301457169405078166287088850291528814544548543939014427
    x = 8205097118389409595439323115389796089299891396986262418677025356794345359482
    y = 23336317363302624501040735193397040517086190044274297683559934227069962398866

  • 2021-01-05 14:40:49 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TW2oq uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 59964042872819513989096656461772507118149622799161899392530078327647466853132
    B = 100136741749611671957317851062142885286501419623816715457041433453106831435103
    n = 115792089210356248762697446949407573530010206525107216741771101842380422275716
    x = 105909890294890907349714581939371345524133809551781239033521481123380210629585
    y = 38111746593053506399150300592986646345120157219824885443074579241141112605702

  • 2021-01-05 08:45:07 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_0mRNt uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100884875230993315504169233821511579704459691536990151820422846997637700962143
    A = 13858128242305709564473199665917136994657250724859970139084022052518634698898
    B = 85668059989208046005850390368078404759598504727107690822075903240762282629945
    n = 100884875230993315504169233821511579704565215762389488878118447291757004967844
    x = 90286372144609337591136621630593404030111905130269845445050097754679261335990
    y = 64386744860065194769146173212248011824901875763800889671527764353336545228174

  • 2021-01-05 02:48:11 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Throf uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 34270369968813629908637922205604021614151880654350681627026497898539515814090
    B = 113623153883395327192417822451696193882373025760347353314641920991207488247218
    n = 115792089210356248762697446949407573530307180807672662676072677069005328441287
    x = 59485761585868234422802127081891745220433558559764563802986467270863227590732
    y = 74145152179552657625274191182573619694510411852165312878101154262604821296828

  • 2021-01-04 20:44:05 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_tePgI uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 114639430013013711783969043837564827077116251977753185157049233888483210821267
    A = 2879939884715304390898543215811230359600227234322799490771134696575638366803
    B = 4141563526842257210592963064973584814139071536369843220145688728973753404865
    n = 114639430013013711783969043837564827077582168815355645707646571232903843504337
    x = 15903404487256418826408650999983652038365969704241594645249867052327198084075
    y = 110918092335009236847837347511717210352329734271728198832224822303496250833944

  • 2021-01-04 14:42:21 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ajABS uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 100375863428951680869712473414493954400948271368022722003328055494448374277094
    B = 113220521910318407110326601439224098719634270650089591755221618628866513690466
    n = 115792089210356248762697446949407573530741005074747615056113747773340216352236
    x = 49743880427340482333646273488320568980843440333949560169470164766689781385188
    y = 30065688442849010164888088203604622524274990580323776373210188354924849274202

  • 2021-01-04 08:52:11 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_vOkqj uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30245393679715260614809240486664414474104198697983772795047460131296975202183
    A = 7420223223331759685380310665951693911231367169482665983371748931546331154222
    B = 19505014948849321924584166288823079722864236810010517341929237171541870534109
    n = 30245393679715260614809240486664414473817640022248911933966817594611747232044
    x = 11717453346563259734772090425584785263219486367473339540820965353083672525615
    y = 23111535303574510816923903237263016580001095866355069697209204437174674354646

  • 2021-01-04 02:51:05 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_blkw0 uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109599349304551773504900746985364520856323177024453577059206531548007515196538
    B = 12496475653448190260157091076942060996085142470996535481296802482719411276258
    n = 115792089210356248762697446949407573529453423614584600794796297424724170244723
    x = 64523792239678125720405235013111541996479655027939346399341045226708899988294
    y = 8102305931623838250013956120415925077446534478092329985075406346118183669654

  • 2021-01-03 20:44:07 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_eM3aN uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 61513332450455381390061763989668375560766516359364767571760623186709149226983
    A = 54791979254423149084311768421029315818610805528352618116710865849027028699629
    B = 10436077339513648317583101968231062955459497363475825875507013957123713800326
    n = 61513332450455381390061763989668375560671123959299885104884600765756358826891
    x = 41441729514849349076252521822943792536011251658012797500507086215916057436093
    y = 33735340730536227366298808414098150462379520154398066331395359854332855483968

  • 2021-01-03 14:40:54 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_teYBT uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 30709714154294147674248399729807520085313502529508615236289528347541247136874
    B = 65190076020267583077560725159751256206421601308303562004053284907443738162736
    n = 115792089210356248762697446949407573530219970960810931454792753163292144667068
    x = 40297853814614281825038798974890536969202533451142818823586402900632288478400
    y = 5442642073855527810401558054522930900363399955104323633611379884519460864094

  • 2021-01-03 08:41:13 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_nL3cA uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 30055459767995772268593365436774791003413373230516989611307530598103413744907
    A = 327314715277562122899717857201014879898468372740119314503893696148763779604
    B = 25113736864401480454546981662850226323844738591373496699753863955493148149899
    n = 30055459767995772268593365436774791003348828621773050062687975911418172943772
    x = 6253688289696840649187117442758143556132392932664667649961934159144673321915
    y = 27213958717563177947521769248002258062045293427089073686404506567467819462082

  • 2021-01-03 02:47:03 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oRFqW uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 5530812121868889506371144053002397581268958151866248757647591382512426319174
    B = 86767733204883698022362036897540613513616518560095950238997537781375504298064
    n = 115792089210356248762697446949407573529474929724708668141847379185577056365727
    x = 111832104898742455502958014507702493356477207061431768294023035903494077367554
    y = 14178649824523285061332591965153919065730008647669361626615748723566365150382

  • 2021-01-02 20:48:14 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_hoUA5 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 93086158114412810270444757725894758173004441699130209135126853599614765615793
    A = 50738340348073729489612874288897415435026513314266396324240290795736095597321
    B = 15889059863660426602290380438738398689470172056730236695840578131315401376799
    n = 93086158114412810270444757725894758172635979169424228611724662702221937248231
    x = 32667761822393003107719860193936160699693436702813071428697892065216881915421
    y = 74504343360749692597652472484476500470145299021980638997423665016441228515626

  • 2021-01-02 14:48:15 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_xotuu uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 18312955113172436354709731270501670585725273016809592136922920207839843353778
    B = 35970649861619398146850794309011881851661319420714093666833571525393292467170
    n = 115792089210356248762697446949407573530464823003928336112290529911234348878932
    x = 50004244325140970571246904930242399837886823136873234742207695986169190833587
    y = 21845677837186183228131191553460257432609904118060806342901254844975892274358

  • 2021-01-02 08:44:00 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_VNbPe uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 53386823353167547258948896676374256454439358885701324091110729046148537609023
    A = 39308580951978430065167388633304269042534949259739420741843887001346072538025
    B = 111984413209189201446342527851938947905488932258710176750189250427439577373
    n = 53386823353167547258948896676374256454779938522188137213725753065686056830564
    x = 15633787255000612223685496182022605676213431468499934336378291854655838708483
    y = 13523102924408437411028321131052573731689082517401612378397704858801988023740

  • 2021-01-02 02:42:28 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_JO4Jv uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 3541900744596955957578339180540520828035766185099083974085472706668242178285
    B = 8902896807685745405670495284896727746003391522009704722919582012775283971033
    n = 115792089210356248762697446949407573529549000250427342787394625115300168564447
    x = 35073837213518120816959066373786625990492915525541245883806752282532638237370
    y = 7304173062640821645273049641558378686051523243146934094749028059569745208278

  • 2021-01-01 20:41:47 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_Fhu5F uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 31663620495138914862041416576164302020417592511070548211061350986024392524817
    A = 15524522894891240120765904514115292894768614909696984236674216474446299393805
    B = 16246432645766819382731149849277976818557534152503862437621184995868300136698
    n = 31663620495138914862041416576164302020228116835141118042052248811101641215029
    x = 782271688106704873963592695414617382820012030091550723380379047739587734371
    y = 25468569744590828724476739901661559608385557830449081104966131758207641283982

  • 2021-01-01 14:43:04 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_19xpP uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 73191393752734293158613814541181300171536985651052994507358597879450090946368
    B = 84722594717797583868020493361356642599917489644209212526149481223832501488541
    n = 115792089210356248762697446949407573529447558690200485829357205659626068530508
    x = 26391919474942036331982339157689633931734557632439934574463003936917581523743
    y = 16262045765602670048216523451686983781670378837921790374284200299814903576894

  • 2021-01-01 08:42:55 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TLyTp uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 22448253635385114725356774179813057343820526650441032823144886526320636349511
    A = 14312008696254095715167513663973991650480855741007486322330743234781886092835
    B = 16653840789003421704665813113643106622152914673761815564394174859088636425742
    n = 22448253635385114725356774179813057343571442345851939753647967450745526914532
    x = 15618797042561319754880579637585745665618716894179559956503821386977683904795
    y = 8267634098934524740472414167512560375139578259204805038407550382733883141358

  • 2021-01-01 02:42:34 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_DfM0G uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 47001493636687647579402132757653977649905601202505924159867454279838371654985
    B = 29549014781172052194798042779494250769899392025170681451890414724374066351465
    n = 115792089210356248762697446949407573529984945160477180221147130494906021085683
    x = 30450206113439202539710728268979608436069767396298222397623314217484009514105
    y = 32450033287166655297848381732412122251859810538729165835418119907041908824396

  • 2020-12-31 20:40:19 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_Al4d4 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115269317398966056946915142282073973227006701840561576622665223349329321711839
    A = 43115547962360940527180036852193481121805164471754747060551351654161348426165
    B = 54411101323919193725445929073995895817092450098387118307028451412002127188426
    n = 115269317398966056946915142282073973226705779715542095268764842858649633355739
    x = 96505804319052696762532605578811671854892389275346702605789276555873641301051
    y = 78031576392550106006409005142993842737315142308321434425095183377247065998024

  • 2020-12-31 14:43:36 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_WmuW5 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 54566383850768867392466341276648898535013167332716171299075611546784337458091
    B = 63714498667781046009423740687293779717128709705982909173186517105689130228127
    n = 115792089210356248762697446949407573529645998968785471581764353608343934863348
    x = 92521635373482630961402705152239708158235333422481900888890881697629874861221
    y = 106505795906208102241366276794427099582786168546243701558911214099490539742088

  • 2020-12-31 08:43:14 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_Z6lGE uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8557718394115287606308112446449150405896507058540281914049239504189627250871
    A = 6132150531271503450128512233138163765084388777495306910995077284463618779429
    B = 3177056097453095622590785898920842123767639410552603957010798276266549666940
    n = 8557718394115287606308112446449150405913022592155220633508191447340716678436
    x = 616305821830835700196043367226319648988796963215559909686887649644292370612
    y = 7602786084807922571222883965622793886113963248661538716525867735475028561750

  • 2020-12-31 02:48:07 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_LNA2T uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 74488734513778126066382182739242587686050007957109750648893610667703763628171
    B = 57644721576175093060359220668379457976119418290204892216142518096904213475337
    n = 115792089210356248762697446949407573530065320618607630085144706648217999112977
    x = 108259958413805632126884281192226061156245004659739823810867402331459355832787
    y = 82002055893136701891798734925024664730534861959734889576580526581513451914398

  • 2020-12-30 20:51:17 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_O22PC uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 57355479658610566278850754625411213826852821212044321403641756767056053041587
    A = 52370395736116525562590231730093560768871753109029519443922229451725806140626
    B = 26974945423199521424324451743316755215256461311883268673056404602784460240073
    n = 57355479658610566278850754625411213826596356025364724639022367235210584056169
    x = 52017054942385521147276008799828480252280578672285336898413961988509458617204
    y = 19709118972523409292782569143475630524048456365476347848856687709865191380822

  • 2020-12-30 14:50:48 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_h2X5c uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 8131238477104738876705699416594964859514486346326703783235940509671917120153
    B = 114154016848763952733105050346641448081700119602975613123102141018225174304101
    n = 115792089210356248762697446949407573530639145170023950942300609192401589757108
    x = 76897761582055800203006796711345054744514217909672666750728371750252715388858
    y = 41723140746281726244959074722186902548958926639903236616824786516212734937438

  • 2020-12-30 08:40:14 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_sOFFa uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 26555431643669128534047766694383247635744393813679687241365130890428504188223
    A = 7421908143515803172121201841963423125318159262662314787030373124425590331131
    B = 14969893542846913226033374961807555379283965081386897633048387785858192001739
    n = 26555431643669128534047766694383247635995220014867744160317090789606624442532
    x = 24930352337333955977373254957652777532935820580456380346840803553239491745125
    y = 10454664385961184776577762073910171283654104838836320923592392069479886365282

  • 2020-12-30 02:40:15 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_HXpQC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 52588142868818980409076966222936052984049290608358624320462630554753007044314
    B = 85194651979451953111799661734237128873155757786580571389041851835939124786726
    n = 115792089210356248762697446949407573529800717808805353710745057275122763810733
    x = 17479856266461746730397518277948638937764002959546106839242639552846113244520
    y = 7711593016769564658140353451060930888487529890503900988900534711790868052178

  • 2020-12-29 20:43:32 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_32o2t uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 34037599423904351784916022157992626711014738474116062185057161130681685005701
    A = 22578289663575990438858173643578004068468311817261821080275503860492412837939
    B = 8354311063036080555980509594538502639041008848384898250117505474116393344686
    n = 34037599423904351784916022157992626711169630408436975627826201132962458240591
    x = 25491125892636087111327984604593739744062728474705189066848319877871790773363
    y = 1998953899042908384955814700714474440693803404364035892693488011609742309862

  • 2020-12-29 14:42:24 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_TGXlb uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 46165812650911519259757197950371522616564175538204437858283421367610742894322
    B = 40424087816576488215058703479757731354962217378868059476176982814295657887967
    n = 115792089210356248762697446949407573529408311955664773851728313334033801244212
    x = 28285933357852042185341188020649078580520759772881457668529719356419329181403
    y = 113406434560787703652107750987635372843066920609578567431121348837610261737330

  • 2020-12-29 08:40:43 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_izrqk uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 89017077102524543314873994971041090247993112119502958440426948033397410011207
    A = 73959778968293824657209538408787456124703741076661690840148658230908756248834
    B = 86935659104912377074085965982227645446155459898870609545841922287060165964370
    n = 89017077102524543314873994971041090247758820082864856201620533538466150181244
    x = 74022290753318399288490772800573125634522709196567732105051929683155969911346
    y = 29721693407888123724284199294281042776897677334407219996047155287839729629490

  • 2020-12-29 02:44:32 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_jx0Zh uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 104664456347051632035670602320182071031809221291478431296312842532182854564473
    B = 47423635357177397862400402205440777324709762532393675699345009955376893524938
    n = 115792089210356248762697446949407573530181210030097581507117127609959032028037
    x = 62711703317477444102555513886125197483649092098447401621729622769760997810552
    y = 95201937615112359492429105580913815488752619893387774484694265421291560395184

  • 2020-12-28 20:44:42 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_4KlGY uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115743985020609913970921851277297349196555778221538802745760480981592748826953
    A = 43633956054823914320073163802640229374463813430925599839228402157560427347756
    B = 68694938192633317639059930672241433605728641582251188984332959544046461208378
    n = 115743985020609913970921851277297349197091571408370635664718525452634815680247
    x = 50813408850834023428950017853448050458767513749351880748284897907887169475516
    y = 47534200569034532739178526570323909195776152831566281003423054420390805895774

  • 2020-12-28 14:00:19 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_kjkjW uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 21838758488301164787689600079137870005373246494791493138294041977229447607918
    B = 74457961994487524381080255405717947446016995405607027453545559741485500667562
    n = 115792089210356248762697446949407573530610763668324459207470535986801469518068
    x = 28664117188211506145823183781655765067262746945035275178052181680700499825962
    y = 115329170436658121251424004363877191102088413424221366335357406349890670520802

  • 2020-12-28 07:55:25 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_g4LBC uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 63660992725268696974051716984121362046882815310728851689753304820539948424259
    A = 35459340485011783007457355439172707382816934210854050308323893046709189921430
    B = 34714101179958673446465746231502055596179601706216773552056309537264946798622
    n = 63660992725268696974051716984121362046861732239861856332816695996056120075244
    x = 48678861297296755746441591125434057577171348932246401838698720285702548973618
    y = 20422334472413070577528549041463398450918287665636564765603726227522861128098

  • 2020-12-28 01:55:56 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_JgdIC uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 81096292132077123258748089993529632027186716694344167486957108140161889907490
    B = 10753272585421075391717141605742523975646537061172413205020955419694129348420
    n = 115792089210356248762697446949407573530598296319464615658707253991262794261693
    x = 89638600668300515903502234236263095295933508872603121745803420313399166632566
    y = 113033467509890843832427377783735377518765984249663492638386250820036566521322

  • 2020-12-27 19:49:07 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_18Cxa uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 55153975050485233876113908409022239836467272304189251096547848761507677690757
    A = 53072148360885476768905291611775713341214731501136574729648204277349323755411
    B = 16130566052394677674134004566154897626828774069683830019851543118162317756398
    n = 55153975050485233876113908409022239836424531093021528939605235683637324046799
    x = 28604489112318131097288691762852520895213029228188064212200738566223599846186
    y = 48802589608138018638111279767462291146595126972092663522787378254702865317996

  • 2020-12-27 13:49:57 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_cgcJz uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 109467666416960952052276364647240228466655619319963409529564084708273667532483
    B = 107101221856476078222842331795331717536317955243356131183243051051704894553565
    n = 115792089210356248762697446949407573530121014155842650443208592212417645380732
    x = 31789370530835403107867021469383718659831178148274469783490013753667731708997
    y = 113962922348463170598897776058202443770441837725775368096442025296084260382418

  • 2020-12-27 07:48:35 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_h5LyE uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 109982339256030559068562958324016788111142815347782119126610038357058752664467
    A = 58938010540178520606538469122419338512352381585360558518679043935774726955738
    B = 143632219158182908001506762526913658506778163410238428971814993496919680312
    n = 109982339256030559068562958324016788111725699640209017008047606667741889285884
    x = 53990503812397441738758842614361093232707379923923998461407952575757453552436
    y = 3633712235142442362756459964513732633330532358421764892017114377594493519658

  • 2020-12-27 01:43:50 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_b3J7k uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 29511436813611800346737585902596318863361174927015187592634621947997479766175
    B = 48336124326081668686878280567898285993891070074708076314648875982883962610604
    n = 115792089210356248762697446949407573530093808419343149565585183203779278975307
    x = 77590535087142485712440502692025031603512787463987023598872996978876038767277
    y = 114100825978895702131549324588789671000037890139576654902688303434231955081130

  • 2020-12-26 19:41:30 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_3n6jX uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 86083907404140242216988027459177075936128199285007773391524282482824419709213
    A = 66967921766442040231707521859408987575259685568713497135303209481640465008881
    B = 84138566673798339560545282975056191350934219956004439617641540414624823199204
    n = 86083907404140242216988027459177075936011154173197410264232512243669781044989
    x = 78889966157619071578806762459627083860461213779678232856766877627288642912781
    y = 42085022124200592527086136499086006038437674342676268851220629821835061949402

  • 2020-12-26 13:43:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_ElgyS uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 114243686323960437406833285911613500762683841319357394809897728220437174766789
    B = 37011132115631352611496503741133840554159732834549837145192655800008045855910
    n = 115792089210356248762697446949407573529533339302331117060361576335676332040612
    x = 12444841815086076824224728649938373667699847093375738035797743677859731488562
    y = 100968525260776085028394900310381556230609936211999730489849528514396431929356

  • 2020-12-26 07:40:48 CET random prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_XaLnL uses a random prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 80304975757414948470963363845171976687166187525050437030004299263259387243731
    A = 2352055568974427618338855542217116940953140303382651334969274248145706954977
    B = 20022609109235074176708502174764958049113666346155084386281404441769382444499
    n = 80304975757414948470963363845171976687029201292786777302796305101375136046452
    x = 17692598440609089032527919974605924845688459787698325435444925975555800937279
    y = 32262632596841553292437528790503834572288168787723308668672100335953605794920

  • 2020-12-26 01:40:01 CET nist prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_oDJQV uses a nist prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 13444870458753461881670253949936014077544074688852588294298211673293206781644
    B = 70381133375845959430728950998846816494754821752301195475654316120074925486491
    n = 115792089210356248762697446949407573530712614080261637939420164900166903827717
    x = 102535334584174882066348756819081909666700823319856239041385799272499100921000
    y = 110318623766641109348511212443046640883198970355027660082380144516457050037884

  • 2020-12-25 19:43:16 CET random prime, random a, prime order

    This 128-bit security elliptic curve #trx_curve_iTie2 uses a random prime and a random value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 100743810786977952864091797689459239158981332828910181177983560121424953437489
    A = 22527278499589748460736918054393562805107588739027833344550276640617607446739
    B = 45222187371525961631855187716997507213109580426275969204516450382078281015296
    n = 100743810786977952864091797689459239159234961297130593962548012210291686873107
    x = 27195346251389688387470812161675244478521910247953534210442466460314325893698
    y = 57197714502766558167082116780093624441168384427935192338535269892709212217742

  • 2020-12-25 13:41:37 CET nist prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_B4NG6 uses a nist prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 38866908621004979237064775617788620088418911510369561072501384935058260044126
    B = 39540320073741134034514755735454634308830207456299576753903101670389583208670
    n = 115792089210356248762697446949407573530129790526140675001443217794014800839988
    x = 74966845824080882321766499530680695686040869105075495184779005052736439204249
    y = 327671154166158889659371095824611180943234242914484473108643912220329615334

  • 2020-12-25 07:02:34 CET random prime, fixed a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_YHL1a uses a random prime and a fixed value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 8085041930230254890234462610725297528205533407653967564358530273251085082471
    A = 4176990360908513355042900040559046135065541713447569927776284075945954368061
    B = 2540803440674401919394823222981402396972719109533381407403535362986774381728
    n = 8085041930230254890234462610725297528115667529441443468670674560370051592116
    x = 3773921053789460928032222590095262916616781610187145081930491222311545451602
    y = 8084269943513301195835060213042609365433645693551501618838487283398899197934

  • 2020-12-25 00:43:53 CET nist prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_kVaoi uses a nist prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 69653202043498300662851337369541614383045520864725062500312000293815283386935
    B = 20104345682856307979345373260336973400867615298589947749472315446170989214913
    n = 115792089210356248762697446949407573529980359779263056734506924050159572357051
    x = 17754509627748874284637512067150741869574759076460941124899909623498355987362
    y = 52263406002735215261861908026772315606214835663785122100165939185191988359562

  • 2020-12-24 18:42:36 CET random prime, fixed a, prime order

    This 128-bit security elliptic curve #trx_curve_NPWBg uses a random prime and a fixed value for a. It is twist secure. The order of the group is prime. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 67514769027321378336619254929103279430089606108601206704409379018541176781951
    A = 39729299270213187587069151962656735369990707244507694011102788420465006860934
    B = 33811317103248098263811735631008310545185687698071588147211745974604611418069
    n = 67514769027321378336619254929103279430545688614618863871103766180088969544193
    x = 13016590166490456900808078775927763166470157004894837378474939934825694461032
    y = 15460798051473524417470990145025152169217721701990270966131592593695466296598

  • 2020-12-24 12:43:14 CET nist prime, random a, Montgomery compatible

    This 128-bit security elliptic curve #trx_curve_liykT uses a nist prime and a random value for a. It is twist secure. The curve admits a Montgomery form and therefore the order of the group has a cofactor of 4. The curve's parameters are given in the Weierstrass form Y2 = X3 + aX + b. It has n points over the prime field of order p. The point (x,y) is a generator for the group of prime order.

    p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
    A = 14344365125304072525969566735654455680847145183660993896986041668609703130920
    B = 113400104963245824122448481962904040765219414038478048642012523683287306593368
    n = 115792089210356248762697446949407573529646429693969108090167168325775021160036
    x = 91348250658875234641948308985317695821169293920560473114605937167670138379111
    y = 30661569698098812885215120126612685660313010094041521118936193947635645848242

  • 2020-12-24 06:42:31 CET random prime, random a, Montgomery compatible